Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.

Slides:



Advertisements
Similar presentations
13- 1 Chapter 13: Color Processing 。 Color: An important descriptor of the world 。 The world is itself colorless 。 Color is caused by the vision system.
Advertisements

Chapter 9: Color Vision. Overview of Questions How do we perceive 200 different colors with only three cones? What does someone who is “color-blind” see?
Chapter 9: Perceiving Color
Color.
Achromatic and Colored Light CS 288 9/17/1998 Vic.
PSYC 330: Perception Seeing in Color PSYC 330: Perception
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
DANGER!DANGER!  Inappropriate use of colour can be disasterous to the application.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007 Tamara Munzner Vision/Color II, Virtual.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
SWE 423: Multimedia Systems Chapter 4: Graphics and Images (2)
Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color perceived to belong to.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
What is color for?.
Homework Set 8: Due Monday, Nov. 18 From Chapter 9: P10, P22, P26, P30, PH3, From Chapter 10: P4, P5, P9.
1 Computer Science 631 Lecture 6: Color Ramin Zabih Computer Science Department CORNELL UNIVERSITY.
Trichromacy Helmholtz thought three separate images went forward, R, G, B. Wrong because retinal processing combines them in opponent channels. Hering.
The Human Visual System Vonikakis Vasilios, Antonios Gasteratos Democritus University of Thrace
Color Representation Lecture 3 CIEXYZ Color Space CIE Chromaticity Space HSL,HSV,LUV,CIELab X Z Y.
COLOR and the human response to light
The visual system Lecture 1: Structure of the eye
RGB Models human visual system? Gives an absolute color description? Models color similarity? Linear model? Convenient for color displays?
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
Chapter 7: Color Vision How do we perceive color?.
CS559-Computer Graphics Copyright Stephen Chenney Color Recap The physical description of color is as a spectrum: the intensity of light at each wavelength.
Why Care About Color? Accurate color reproduction is commercially valuable - e.g. Kodak yellow, painting a house Color reproduction problems increased.
Major transformations of the light signal in the retina: 1.Temporal filtering – visual response slower than input signal. 2. Spatial filtering – local.
EYES!.
THEORIES OF COLOR VISION
9/14/04© University of Wisconsin, CS559 Spring 2004 Last Time Intensity perception – the importance of ratios Dynamic Range – what it means and some of.
Vision. Light is electromagnetic energy. One nm = one billionth of a meter The Visible Spectrum.
Any questions about the current assignment? (I’ll do my best to help!)
1 Perception and VR MONT 104S, Fall 2008 Lecture 7 Seeing Color.
1 Color vision and representation S M L.
Perceiving and Recognizing Objects 4. Object Recognition Objects in the brain Extrastriate cortex: The region of cortex bordering the primary visual cortex.
Computer Vision – Fundamentals of Human Vision Hanyang University Jong-Il Park.
ELE 488 Fall 2006 Image Processing and Transmission Syllabus 1. Human Visual System 2. Image Representations (gray level, color) 3. Simple Processing:
Topic 5 - Imaging Mapping - II DIGITAL IMAGE PROCESSING Course 3624 Department of Physics and Astronomy Professor Bob Warwick.
Chapter 9: Perceiving Color. What Are Some Functions of Color Vision? Color signals help us classify and identify objects. Color facilitates perceptual.
Color Theory ‣ What is color? ‣ How do we perceive it? ‣ How do we describe and match colors? ‣ Color spaces.
Why is this hard to read. Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color.
The Visual System: Retinal Mechanisms
CSC361/ Digital Media Burg/Wong
How do we see color? There is only one type of rod. It can only tell the intensity of the light, not its color. Because the cones can differentiate colors,
Graphics Lecture 4: Slide 1 Interactive Computer Graphics Lecture 4: Colour.
CS5600 Computer Graphics by Rich Riesenfeld Spring 2006 Lecture Set 11.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
Opponent Processes Lateral geniculate nucleus (LGN) has cells that are maximally stimulated by spots of light Visual pathway stops in LGN on the way from.
CS-321 Dr. Mark L. Hornick 1 Color Perception. CS-321 Dr. Mark L. Hornick 2 Color Perception.
David Luebke 1 2/5/2016 Color CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
ECE 638: Principles of Digital Color Imaging Systems Lecture 11: Color Opponency.
The Retina and Fovea Rods and Cones Light & Dark Adaptation Blind Spot, Blood Vessels The Fovea and Acuity.
Chapter 9: Perceiving Color. Figure 9-1 p200 Figure 9-2 p201.
09/10/02(c) University of Wisconsin, CS559 Fall 2002 Last Time Digital Images –Spatial and Color resolution Color –The physics of color.
Color Measurement and Reproduction Eric Dubois. How Can We Specify a Color Numerically? What measurements do we need to take of a colored light to uniquely.
Color Models Light property Color models.
(c) University of Wisconsin, CS559 Spring 2002
Perception and Measurement of Light, Color, and Appearance
© University of Wisconsin, CS559 Spring 2004
Color Representation Although we can differentiate a hundred different grey-levels, we can easily differentiate thousands of colors.
Early Processing in Biological Vision
The Visual System: Retinal Mechanisms
Introduction to Perception and Color
Slides taken from Scott Schaefer
Outline Announcements Human Visual Information Processing
Presentation transcript:

Why is this hard to read

Unrelated vs. Related Color Unrelated color: color perceived to belong to an area in isolation (CIE 17.4) Related color: color perceived to belong to an area seen in relation to other colors (CIE 17.4)

Illusory contour Shape, as well as color, depends on surround Most neural processing is about differences

Illusory contour

CS 768 Color Science Perceiving color Describing color Modeling color Measuring color Reproducing color

Spectral measurement Measurement p( ) of the power (or energy, which is power x time ) of a light source as a function of wavelength Usually relative to p(560nm) Visible light nm

Retinal line spread function retinal position relative intensity

Linearity additivity of response (superposition) r(m 1 +m 2 )=r(m 1 )+r(m 2 ) scaling (homogeneity) r(  m)=  r(m) r(m 1 (x,y)+m 2 (x,y))= r(m 1 )(x,y)+r(m 2 )(x,y)= (r(m 1 )+r(m 2 ))(x,y) r(  m(x,y))=  r(m)(x,y) retinal intensity monitor intensity

Non-linearity

Ganglion Bipolar Amacrine Rod Cone Epithelium Optic nerve Retinal cross section Light Horizontal

Visual pathways Three major stages –Retina –LGN –Visual cortex –Visual cortex is further subdivided

Optic nerve 130 million photoreceptors feed 1 million ganglion cells whose output is the optic nerve. Optic nerve feeds the Lateral Geniculate Nucleus approximately 1-1 LGN feeds area V1 of visual cortex in complex ways.

Photoreceptors Cones - –respond in high (photopic) light –differing wavelength responses (3 types) –single cones feed retinal ganglion cells so give high spatial resolution but low sensitivity –highest sampling rate at fovea

Photoreceptors Rods –respond in low (scotopic) light –none in fovea try to foveate a dim star—it will disappear –one type of spectral response –several hundred feed each ganglion cell so give high sensitivity but low spatial resolution

Luminance Light intensity per unit area at the eye Measured in candelas/m 2 (in cd/m 2 ) Typical ambient luminance levels (in cd/m 2 ): –starlight –moonlight –indoor lighting 10 2 –sunlight 10 5 –max intensity of common CRT monitors 10 ^2 From Wandell, Useful Numbers in Vision Science

Rods and cones Rods saturate at 100 cd/m 2 so only cones work at high (photopic) light levels All rods have the same spectral sensitivity Low light condition is called scotopic Three cone types differ in spectral sensitivity and somewhat in spatial distribution.

Cones L (long wave), M (medium), S (short) –describes sensitivity curves. “Red”, “Green”, “Blue” is a misnomer. See spectral sensitivity.

Receptive fields Each neuron in the visual pathway sees a specific part of visual space, called its receptive field Retinal and LGN rf’s are circular, with opponency; Cortical are oriented and sometimes shape specific On center rfRed-Green LGN rf Oriented Cortical rf

Channels: Visual Pathways subdivided Channels Magno –Color-blind –Fast time response –High contrast sensitivity –Low spatial resolution Parvo –Color selective –Slow time response –Low contrast sensitivity –High spatial resolution Video coding implications Magno –Separate color from b&w –Need fast contrast changes (60Hz) –Keep fine shading in big areas –(Definition) Parvo –Separate color from b&w –Slow color changes OK (40 hz) –Omit fine shading in small areas –(Definition) (Not obvious yet) pattern detail can be all in b&w channel

Trichromacy Helmholtz thought three separate images went forward, R, G, B. Wrong because retinal processing combines them in opponent channels. Hering proposed opponent models, close to right.

Opponent Models Three channels leave the retina: –Red-Green (L-M+S = L-(M-S)) –Yellow-Blue(L+M-S) –Achromatic (L+M+S) Note that chromatic channels can have negative response (inhibition). This is difficult to model with light.

+- +

Log Spatial Frequency (cpd) Contrast Sensitivity Luminance Red-Green Blue-Yellow

Color matching Grassman laws of linearity: (     )(   (   (   Hence for any stimulus s( ) and response r( ), total response is integral of s( ) r( ), taken over all or approximately  s( )r( )

Primary lights Test light Bipartite white screen Surround field Test lightPrimary lights Subject Surround light

Color Matching Spectra of primary lights s 1 ( ), s 2 ( ), s 3 ( ) Subject’s task: find c 1, c 2, c 3, such that c 1 s 1 ( )+c 2 s 2 ( )+c 3 s 3 ( ) matches test light. Problems (depending on s i ( )) –[c 1,c 2,c 3 ] is not unique (“metamer”) –may require some c i <0 (“negative power”)

Color Matching Suppose three monochromatic primaries r,g,b at , , nm and a 10° field (Styles and Burch 1959). For any monochromatic light t( ) at  find scalars R=R(  G=G(  B=B(  such that t( ) = R(  r  G(  g  B(  b R( ,  G( ,  B(  are the color matching functions based on r,g,b.

Color matching Grassman laws of linearity: (     )(   (   (   Hence for any stimulus s( ) and response r( ), total response is integral of s( ) r( ), taken over all or approximately  s( )r( )

Color matching What about three monochromatic lights? M( ) = R* R ( ) + G* G ( ) + B* B ( ) Metamers possible good: RGB functions are like cone response bad: Can’t match all visible lights with any triple of monochromatic lights. Need to add some of primaries to the matched light

Primary lights Test light Bipartite white screen Surround field Test lightPrimary lights Subject Surround light

Color matching Solution: CIE XYZ basis functions

Color matching Note Y is V( ) None of these are lights Euclidean distance in RGB and in XYZ is not perceptually useful. Nothing about color appearance

XYZ problems No correlation to perceptual chromatic differences X-Z not related to color names or daylight spectral colors One solution: chromaticity

Chromaticity Diagrams x=X/(X+Y+Z) y=Y/(X+Y+Z) z=Z/(X+Y+Z) Perspective projection on X-Y plane z=1-(x-y), so really 2-d Can recover X,Y,Z given x,y and on XYZ, usually Y since it is luminance

Chromaticity Diagrams No color appearance info since no luminance info. No accounting for chromatic adaptation. Widely misused, including for color gamuts.

Some gamuts SWOP ENCAD GA ink

MacAdam Ellipses JND of chromaticity Bipartite equiluminant color matching to a given stimulus. Depends on chromaticity both in magnitude and direction.

MacAdam Ellipses For each observer, high correlation to variance of repeated color matches in direction, shape and size –2-d normal distributions are ellipses –neural noise? See Wysecki and Styles, Fig 1(5.4.1) p. 307

MacAdam Ellipses JND of chromaticity –Weak inter-observer correlation in size, shape, orientation. No explanation in Wysecki and Stiles 1982 More modern models that can normalize to observer?

MacAdam Ellipses JND of chromaticity –Extension to varying luminence: ellipsoids in XYZ space which project appropriately for fixed luminence

MacAdam Ellipses JND of chromaticity –Technology applications: Bit stealing: points inside chromatic JND ellipsoid are not distinguishable chromatically but may be above luminance JND. Using those points in RGB space can thus increase the luminance resolution. In turn, this has appearance of increased spatial resolution (“anti-aliasing”) Microsoft ClearType. See and

CIELab L* = 116 f(Y/Y n )-16 a* = 500[f(X/X n ) – f(Y/Y n )] b* = 200[f(Y/Y n ) –f(Z/Z n )] where X n,Y n,Z n are the CIE XYZ coordinates of the reference white point. f(z) = z 1/3 if z> f(z)=7.787z+16/116 otherwise L* is relative achromatic value, i.e. lightness a* is relative greenness-redness b* is relative blueness-yellowness

CIELab L* = 116 f(Y/Y n )-16 a* = 500[f(X/X n ) – f(Y/Y n )] b* = 200[f(Y/Y n ) –f(Z/Z n )] where X n,Y n,Z n are the CIE XYZ coordinates of the reference white point. f(z) = z 1/3 if z> f(z)=7.787z+16/116 otherwise

CIELab L* = 116 f(Y/Y n )-16 a* = 500[f(X/X n ) – f(Y/Y n )] b* = 200[f(Y/Y n ) –f(Z/Z n )] where X n,Y n,Z n are the CIE XYZ coordinates of the reference white point. f(z) = z 1/3 if z> f(z)=7.787z+16/116 otherwise C* ab = sqrt(a* 2 +b* 2 ) corresponds to perception of chroma (colorfulness). hue angle h ab =tan -1 (b*/a*) corresponds to hue perception. L* corresponds to lightness perception Euclidean distance in Lab space is fairly correlated to color matching and color distance judgements under many conditions. Good correspondence to Munsell distances.

a*>0 redder a*<0 greener b*>0 yellower b*<0 bluer chroma hue lightness

Complementary Colors c1 and c2 are complementary hues if they sum to the whitepoint. Not all spectral (i.e. monochromatic) colors have complements. See chromaticity diagram. See Photoshop Lab interface.

CIELab defects Perceptual lines of constant hue are curved in a*-b* plane, especially for red and blue hues (Fairchiled Fig 10.5) Doesn’t predict chromatic adaptation well without modification Axes are not exactly perceptual unique r,y,g,b hues. Under D65, these are approx 24°, 90°,162°,246° rather than 0°, 90°, 180°, 270° (Fairchild)