A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.

Slides:



Advertisements
Similar presentations
Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Advertisements

Proto-Planetary Disk and Planetary Formation
A simple model to explain the high gas content of galaxy UGC 8802 Ruixiang Chang Shanghai Astronomical Observatory Collaborators: Jinliang Hou Shiyin Shen.
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Peter Schilke Submillimeter Astronomy June 15, 2005 Line Surveys Peter Schilke, MPIfR.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Chemical evolution from cores to disks
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
THE BIRTH OF STARS AND PLANETARY SYSTEMS Stephen E. Strom National Optical Astronomy Observatory 07 January, 2003.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Proper Motions of large-scale Optical Outflows Fiona McGroarty, N.U.I. Maynooth ASGI, Cork 2006.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
SMA Observations of Sgr A* Dan P. Marrone, Ram Rao, Jim Moran, Jun-Hui Zhao Harvard-Smithsonian Center for Astrophysics Sgr A * at 337 GHz 2004 May 25.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
The formation of stars and planets
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Overview of Astronomy AST 200. Astronomy Nature designs the Experiment Nature designs the Experiment Tools Tools 1) Imaging 2) Spectroscopy 3) Computational.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
Collaborators : Valentine Wakelam (supervisor)
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A Study of HCO + and CS in Planetary Nebulae Jessica L. Edwards Lucy M. Ziurys Nick J. Woolf The University of Arizona Departments of Chemistry and Astronomy.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ALMA Timeline  Design and Development Phase Jun Dec 2001  International partnership established 1999  Prototype antenna contract Dec 99  ALMA/NA.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
Studying Infall Neal J. Evans II.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Physics 778 – Star formation: Protostellar disks Ralph Pudritz.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.
SMA and JCMT Observations of IRAS in HCN J=4-3: From Circumbinary Envelope to Circumstellar Disk SMA JCMT Shigehisa Takakuwa 1, Nagayoshi Ohashi.
ALMA User Perspective: Galactic Studies
The MALT90 survey of massive star forming regions
High Resolution Submm Observations of Massive Protostars
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
Probing CO freeze-out and desorption in protoplanetary disks
Molecules: Probes of the Interstellar Medium
-Orbital Motions and Mass Determination
Astrochemical modeling of Planck cold clump G
Presentation transcript:

A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Origin of Protoplanetary Disks It’s the angular momentum, stupid Initial distribution of angular momentum –E.g., Goodman et al. 1998; Ohashi et al. 1997; Belloche et al Redistribution during collapse Formation of a viscous disk –Mass, size, evolution with time, accretion shock –E.g., Stahler 1994; Velusamy et al. 2002

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA L1489 IRS: A Transitional Object? Compact dust continuum –2000 AU radius –Density: radial power law with slope 1.8–2.1 –Mass 0.01–0.02 M  –Hogerheijde & Sandell 2000; Joergensen et al Neighboring prestellar core SCUBA 850 and 450 µm observations from Hogerheijde & Sandell (2000)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA L1489 IRS: A Transitional Object? Single-dish HCO + lines –infall Interferometer HCO + image –Rotation Hogerheijde (2001) CO 4.5 µm absorption lines –Inward motions continue to within 0.1 AU from star Boogert et al. (2002) Hogerheijde (2001)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA L1489 IRS: A Transitional Object? Single-dish HCO + lines –infall Interferometer HCO + image –Rotation Hogerheijde (2001) CO 4.5 µm absorption lines –Inward motions continue to within 0.1 AU from star Boogert et al. (2002) Hogerheijde (2001) HCO + 1.1mm BIMA 2000

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA L1489 IRS: A Transitional Object? NICMOS scattered light suggests flared disk –Padgett et al. (1998) Simple model –Flared disk –10% infall, 90% rotation –Hogerheijde (2001) Transitional, short-lived (2x10 4 yr) stage between embedded and T Tauri phase? NICMOS image from Padgett et al. (1998)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Molecular Line Survey Single-dish molecular line measurements –JCMT, IRAM 30m, and Onsala 20m: 14”–38” = 2000–5500 AU –C 17 O 1–0, 2–1, 3–2 –C 18 O 1–0, 2–1, 3–2 –CS 2–1, 5–4, 7–6 –C 34 S 2–1, 5–4 –HCO + 1–0, 3–2, 4–3 –H 13 CO + 1–0, 3–2 –CN 1–0, 3–2 –HCN 1–0, 4–3 –H 13 CN 1–0 –HNC 4–3 Aims –More realistic model –Chemical inventory

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Modeling Approach Physical model: density –Flattened Plummer sphere Consistent with SCUBA data p=1.8 (Joergensen et al. 2002) Brinch, Hogerheijde, & Joergensen (in prep) (Joergensen et al. 2002)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Modeling Approach Physical model: density –Flattened Plummer sphere Consistent with SCUBA data p=1.8 (Joergensen et al. 2002) f>0 Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Modeling Approach Velocity field –Rotation V   √M * r -0.5 –Infall V r  √M * r -0.5 Parameterize V-field by –|V|  √M * r -0.5 –tg(  )=V r /V   Brinch, Hogerheijde, & Joergensen (in prep) V VV VrVr

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Modeling Approach  2 minimization of synthetic single-dish spectra –Gridded physical model + (constant) abundances –Molecular excitation using Monte Carlo approach –Synthetic spectra, convolved to appropriate resolution 4+n free parameters –Flattening parameter f –Inclination i –Stellar mass M * –Velocity field direction angle  –Molecular Abundances X i Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Results Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Results Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Results Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Results Preliminary values –Stellar mass 1.1 M  –Flattening parameter f=3.0 Equivalent with h/R=0.35 –Inclination 70˚ –Velocity field angle  =18˚ Inspiral time approximately 10 5 yr Significant fraction of embedded life time Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Results Abundances –C 18 O 4x10 -7 (-> 12 CO 2x10 -4 no depletion) –CS 8x10 -9 –SO 8x10 -9 –H 2 CO 1x10 -9 –HCO + 4x10 -8 –HCN 4x10 -9 –HNC 2x10 -9 –CN 2x10 -9 Dark cloud values; little depletion; HCO + increased? Brinch, Hogerheijde, & Joergensen (in prep)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA HCO + 1–0 Interferometry ObservationsModel Prediction Brinch, Hogerheijde, & Joergensen (in prep) Surrounding cloud material

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Enhanced-SMA Predictions SMA CSO JCMT

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Enhanced-SMA Predictions Brinch, Hogerheijde, & Joergensen (in prep) HCO + 4–3 at 0.3” (40 AU)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA A break in the V-field at 300 AU Brinch, Hogerheijde, & Joergensen (in prep) HCO + 4–3 at 0.3” (40 AU)

Submillimeter Astronomy in the Era of the SMA June 13– Cambridge MA Conclusion L1489 IRS –Disklike rotating and infalling structure –Lifetime 10 5 yr, significant fraction of embedded phase –Chemical abundances No evidence for depletion HCO + enhanced Further high-resolution observations with, e.g., enhanced-SMA –Breaks in the velocity field on scales of T Tauri disks –Changes in the chemistry on scales of T Tauri disks