Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS.

Slides:



Advertisements
Similar presentations
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Advertisements

Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
CPT EIT LWI. |2> |1> |3> CPT Suppose then solving Schrodinger Equation What if we’re sneaky and choose Such that c 1 (t)=0. Then we are trapped in the.
Nonlinear microwave optics in superconducting quantum circuits Zachary Dutton Raytheon BBN Technologies BBN collaborators Thomas Ohki John Schlafer Bhaskar.
Super-radiant light scattering with BEC’s – a resource for useful atom light entaglement? Motivation – quantum state engineering Light-atom coupling in.
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
Stimulated Raman Adiabatic Passage into continuum
Title : Investigation on Nonlinear Optical Effects of Weak Light in Coherent Atomic Media  Author : Hui-jun Li  Supervisor: Prof Guoxiang Huang  Subject:
Quantum Feedback Control of Entanglement in collaboration with H. M. Wiseman, Griffith University, Brisbane AU University of Camerino, Italy Stefano Mancini.
Interference experiments with ultracold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev,
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Observations in Optimal Control of Quantum Dynamics Feng Shuang Herschel Rabitz Department of Chemistry, Princeton University ICGTMP 26 th, June,
Overview of QM Translational Motion Rotational Motion Vibrations Cartesian Spherical Polar Centre of Mass Statics Dynamics P. in Box Rigid Rotor Spin Harmonic.
Entanglement of Collective Quantum Variables for Quantum Memory and Teleportation N. P. Bigelow The Center for Quantum Information The University of Rochester.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Light-Matter Quantum Interface
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Quantum coherence and interactions in many body systems Collaborators: Ehud Altman, Anton Burkov, Derrick Chang, Adilet Imambekov, Vladimir Gritsev, Mikhail.
1 Optically polarized atoms Marcis Auzinsh, University of Latvia Dmitry Budker, UC Berkeley and LBNL Simon M. Rochester, UC Berkeley.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Information with Continuous Variables Klaus Mølmer University of Aarhus, Denmark Supported by the European Union and The US Office of Naval Reseach.
Optically polarized atoms
Schrödinger’s Elephants & Quantum Slide Rules A.M. Zagoskin (FRS RIKEN & UBC) S. Savel’ev (FRS RIKEN & Loughborough U.) F. Nori (FRS RIKEN & U. of Michigan)
Physics Department, Harvard University Towards quantum control of single photons using atomic memory Mikhail Lukin Today’s talk: Two approaches to single.
Magnetism of spinor BEC in an optical lattice
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
System and definitions In harmonic trap (ideal): er.
T ECHNISCHE U NIVERSITÄT KAISERSLAUTERN K. Bergmann Lecture 6 Lecture course - Riga, fall 2013 Coherent light-matter interaction: Optically driven adiabatic.
EXPLORING NATURE WITH A QUANTUM SIMULATOR
Gravitational Waves (& Gravitons ?)
Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Quantization via Fractional Revivals Quantum Optics II Cozumel, December, 2004 Carlos Stroud, University of Rochester Collaborators:
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Efficient measure of scalability Cecilia López, Benjamin Lévi, Joseph Emerson, David Cory Department of Nuclear Science & Engineering, Massachusetts Institute.
Atomic entangled states with BEC SFB Coherent Control €U TMR A. Sorensen L. M. Duan P. Zoller J.I.C. (Nature, February 2001) KIAS, November 2001.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Pablo Barberis Blostein y Marc Bienert
Quantum teleportation between light and matter
Jonathan P. Dowling OPTICAL QUANTUM COMPUTING quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Department of Physics and Astronomy Quantum.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Solid state physics is the study of how atoms arrange themselves into solids and what properties these solids have. Calculate the macroscopic properties.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
Scheme for Entangling Micromeccanical Resonators
Atomic BEC in microtraps: Heisenberg microscopy of Zitterbewegung
Quantum Information with Continuous Variables
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spin-triplet molecule inside carbon nanotube
Jaynes-Cummings Hamiltonian
Presentation transcript:

Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS III / QUDAL Feb. 2006, Eilat, Israel

in collaboration with: Mikhail Lukin (Harvard) Eugene Polzik (Kopenhagen) Anders Sørensen (Kopenhagen) QUACS

quantum networks |>|> photons as information carrieratoms for storage and processing

atom-light interfaces: EIT scheme  (t) probe Fleischhauer, Lukin, PRL 2000; PRA 2002 Phillips et al. PRL 2001, Kuzmich et al. Nature 2005 Eisaman et al. Nature 2005 quasi-particle picture ? Faraday scheme  probe Julsgaard, Sherson, Cirac, Fiurášek, Polzik, Nature 2004 Sørenson, Mølmer, … quant-ph/ , … continuous variable picture

outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme

outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme

outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme

outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme

perfect single-mode memory: perfect single-mode memory: light modeatomic ensemble XP X P LL A A map of ideal q-memory: M symplectic 2 x 2 matrices i

bi-linear Hamiltonian: assume:

solution of Heisenberg equation: if determinant is nonzero (=1):

generic Hamiltonians for ideal mapping  (T) =  / 2

Faraday rotation: microscopic Hamiltonian Julsgaard, Sherson, Cirac, Fiurášek, Polzik, Nature 2004 Sørenson, Mølmer et al. quant-ph/ strong coherent field with linear polarization in x direction i.e. x =  + and  - atoms are spin polarized in x direction, i.e. (|1> + |2>)/  2 z x y

Stokes parameters of polarization state of light Spins of atomic ensemble „macroscopic“ Hamiltonian constant of motion

x – pol. coherent input light initial atomic polarization „macroscopic“ Hamiltonian = |  | / 2 x 2 non-ideal Hamiltonian mapping

single-pass Faraday scheme: unitary evolution for time t requires atomic spin squeezing requires perfect detection & feedbeack L measurement of light component X  x and momentum displacement –x/t of atoms (feedback) Julsgaard et.al, Nature 2004

Gaussian state fidelity of single-pass scheme: non-Gaussian states (  = 0) coherent spin and light state, pefect detector (  =0),  F ≤ 82 % coh. spin state (CSS)

double-pass Faraday scheme: 1. unitary evolution with H for t requires either atomic spin squeezing but no feedback Sherson et al. quant-ph/ unitary evolution with H for t´ 2 tt´= 1 or perfect detection & feedback but no squeezing

triple-pass Faraday scheme: ideal mapping w/o squeezing and feedback operator identity

EIT scheme:  Fleischhauer, Lukin, PRL 2000; PRA 2002; Phillips et al. PRL 2001, Kuzmich et al. Nature 2005; Eisaman et al. Nature 2005 dynamically controllable group velocity 2 3

„stopping“ of light:

Autler-Townes splitting   quasi-particle picture of EIT: large small

dark & bright-state polaritons: in adiabatic limit:

collective spin light-stopping = adiabatic rotation of DSP: E  spin

polariton excitations: |n  |S = -N/2  |0  |S = -N/2 + n   = 0  =  /2 polariton rotation: = ph at

time-dependent  : perfect mapping Hamiltonian effective Hamiltonian of dynamical EIT:

off-resonant Raman scheme: drive-field  + polarized atoms z- polarized g /  = g ´ /  ´  Faraday scheme S  22 zz

choose perfect mapping Hamiltonian drive-field  + polarized atoms z- polarized

summary:summary: perfect single-mode quantum memory single-pass Faraday scheme + squeezing and feedback double-pass Faraday scheme + squeezing or feedback triple-pass Farday scheme EIT scheme