Raman Spectroscopy Raman effect is a 2-photon scattering process

Slides:



Advertisements
Similar presentations
Infrared Spectroscopy A.Why are we doing this experiment? 1)Infrared spectra tell us only a limited amount about a transition metal complex 2)In very simple.
Advertisements

Raman Spectroscopy A) Introduction IR Raman
Chapter 18 Raman Spectroscopy
CHEM 515 Spectroscopy Raman Spectroscopy.
Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering.
Raman Spectroscopy Laser 4880 Å. Raman Spectroscopy.
Molecular Fluorescence Spectroscopy
Lecture 6. FT-IR and Raman Spectroscopy. FT-IR Analytical infrared studies are based on the absorption or reflection of the electromagnetic radiation.
Raman Spectroscopy Rayleigh Scattering ─ about 1 in 10,000 photons will scatter at an angle from a sample without being absorbed while keeping the same.
Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering.
Raman Spectroscopy Laser 4880 Å. Raman Spectroscopy.
Infrared Radiation 780 nm m Near, Mid and Far
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering.
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Vibrational Spectroscopy HH O Bend. Diatomic Molecules So far we have studied vibrational spectroscopy in the form of harmonic and anharmonic oscillators.
Introduction to Infrared Spectrometry Chap 16. Quantum Mechanical Treatment of Vibrations Required to include quantized nature of E From solving the wave.
Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering.
Lecture 3 INFRARED SPECTROMETRY
Spectral Regions and Transitions
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
What Are Some Types of Spectroscopy ?
Common types of spectroscopy
 PART Requirements for Spectroscopic Techniques for Polymers 1. High resolution 2. High sensitivity (>1%) 3. High selectivity between molecular.
Raman Spectroscopy Komal Choudhary Lecturer School of Biotechnology
Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the.
Vibrational and Rotational Spectroscopy
Infrared Spectroscopy
1 University of Petra Faculty of Science & Arts Department of Chemistry Seminar I.R Spectroscopy By Firas Al-ouzeh Supervisor : Nuha I. Swidan Summer 2007.
Forensic and homeland security applications of modern portable Raman spectroscopy Laura Fairburn Mike Rusak.
INFRA RED ABSORPTION SPECTROSCOPY Kateřina Hynštová.
RamanRaman. Scattering Tyndall scattering – if small particles are present During Rayleigh scattering (interaction of light with relatively small molecules)
Infrared Spectroscopy Chapters Chapter 7- I.
10-1 Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
The Nobel Prize in Physics 1930 "for his work on the scattering of light and for the discovery of the effect named after him" Sir Chandrasekhara Venkata.
Powerpoint Templates Page 1 Electric dipole Transition moment.
Infrared Spectroscopy
Advanced Analytical Chemistry – CHM 6157® Y. CAIFlorida International University Updated on 9/18/2008Chapter 5Raman Spectrometry Chapter 5 Raman Spectrometry.
States and transitions
(IR spectroscopy) is the subset of spectroscopy that deals with the infrared region of the electromagnetic spectrum. spectroscopy infraredelectromagnetic.
J. 1.1 Elastic scattering and inelastic scattering Elastic scattering (Rayleigh scattering) : no change in energy of light EMR induces oscillating electric.
Spectroscopy and electromagnetic waves. Polarisability of Matter.
NANO 225 Intro to Nano/Microfabrication
INFRARED SPECTROSCOPY
Infrared Spectroscopy
Raman Spectroscopy A) Introduction IR Raman
1 Increasing frequency CH 2 =CH-CH=CH 2 Absorption spectrum for 1,3-butadiene.
Rotation and vibration spectra. Rotational States Molecular spectroscopy: We can learn about molecules by studying how molecules absorb, emit, and scatter.
INFRARED SPECTROSCOPY Ashraf M. Mahmoud, Ph.D.  Electromagnetic radiation  Infrared radiation and its interaction with matter  Theory of Vibration.
Raman spectroscopy.
RAMAN SPECTROSCOPY SUBMITTED BY: FARHEENA KHURSHID
1 Scattering of Light: Raman Spectroscopy Deanna O’Donnell Informal P-Chem Review June 4 th, 2009.
RAMAN SPECTROSCOPY THREE EFFECTS OF RADIATION OF LIGHT ON MOLECULES CAN OCCUR. (i) RADIATION OF LIGHT ON TO MOLECULES, SOME OF THE LIGHT WILL BE REFLECTED.
RAMAN EFFECT.
Raman Spectroscopy BY Dr. Bhawna.
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
UNIT IV Molecules.
Introduction & Its instrumentation
Fourier Transformation Infra-red
Analytical methods Prepared By Dr. Biswajit Saha.
INFRARED SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
Raman Spectroscopy A) Introduction IR Raman
Raman Scattering ——CCl4 molecular Raman Spectrum 崔婧
Instrumental Analysis
Chapter – 8 Fluorescence
Introduction During the last years the use of Fourier Transform Infrared spectroscopy (FTIR) to determine the structure of biological macromolecules.
IR-Spectroscopy Introduction Theory Instrumentation Sample preparation
Raman Spectroscopy A) Introduction IR Raman
Presentation transcript:

Raman Spectroscopy Raman effect is a 2-photon scattering process These processes are inelastic scattering: Stokes scattering: energy lost by photon: —  (( —  ))  Photon in Photon out No vibration Vibration Anti-Stokes scattering: energy gained by photon: (( —  )) —   Vibration No vibration

But dominant process is elastic scattering: Rayleigh scattering —  —   Photon in Photon out No vibration No vibration If incident photon energy E; vibration energy v, then in terms of energy, photon out has energy: E-v Stokes scattering E+v anti-Stokes scattering E Rayleigh scattering

Representation in terms of energy levels: Arrow up = laser photon in; Arrow down = Raman scattering out

Typical Raman spectrum Plot of signal intensity vs Raman shift (Raman shift, in cm-1 = energy of photon in-energy of photon out) shows 3 vibrations of octahedral BiCl63-

Selection rule for Raman spectrum Vibration is active if it has a change in polarizability, . Polarizability is the ease of distortion of a bond. For Raman-active vibrations, the incident radiation does not cause a change in the dipole moment of the molecule, but instead a change in polarizability. In starting the vibration going, the electric field of the radiation at time t, E, induces a separation of charge (i.e. between the nuclear protons and the bonding electrons). This is called the induced dipole moment, P. (Don’t confuse it with the molecule’s dipole moment, or change in dipole moment, because this is often zero). P = E

Example: There are 4 normal modes of CO2. Only 1 is Raman active is dipole moment; is polarizability; Q is vibration coordinate, The slopes are measured at Q = 0 (I.e. at the equilibrium position). Change in dipole moment, , and polarizability, , during CO2 vibrations 1 3

Uses of Raman Spectroscopy Raman spectroscopy has become more widely used since the advent of FT-Raman systems and remote optical fibre sampling. Previous difficulties with laser safety, stability and precision have largely been overcome. Basically, Raman spectroscopy is complementary to IR spectroscopy, but the sampling is more convenient, since glass containers may be used and solids do not have to be mulled or pressed into discs.

Applications of Raman spectroscopy Qualitative tool for identifying molecules from their vibrations, especially in conjunction with infrared spectrometry. Quantitative Raman measurements a) not sensitive since Raman scattering is weak. But resonance Raman spectra offer higher sensitivity, e.g. fabric dyes studied at 30-50 ppb. b) beset by difficulties in measuring relative intensities of bands from different samples, due to sample alignment, collection efficiency, laser power. Overcome by using internal standard.

Raman and fluorescence spectra The diagram shows some of the energy levels of the uranyl ion. UO22+   20000 cm-1  Energy   ___________ 800 cm-1 ___________ 0 cm-1 The vibrational level at 800 cm-1 is the totally symmetric stretch. The electronic levels are fairly continuous above 20000 cm-1. What happens if you excite with a laser at (a) 15000 cm-1? (b) 21000 cm-1? (c) 22000 cm-1?

Raman vs IR spectroscopy  RAMAN IR Sample preparation usually simpler Liquid/ Solid samples must be free from dust Biological materials usually fluoresce, masking scattering Spectral measurements on vibrations Halide optics must be used- made in the visible region-glass cells expensive, easily broken, may be used water soluble Depolarization studies are easily made IR spectrometers not usually (laser radiation almost totally linearly equipped with polarizers polarized)

More about polarizability , polarizability of molecule, related to mobility of electrons (under applied radiation field in our present case). For atoms, same distortion is obtained for field in any direction. Polarizability is Isotropic For many molecules, polarizability depends on direction of applied field, e.g. H—H easier to distort along bond than  bond. Polarizability is anisotropic   Variation of  with direction is described by polarizability tensor.

Calculation of Stokes and anti-Stokes intensity ratio The Raman spectrum was taken at 300 K using 1064 nm Nd-YAG radiation. Check the intensity ratio of the 1 features at 278.5 cm-1. What can you say about the intensity ratio of the band at 112 cm-1?

Instrumentation Dispersive Raman instruments Laser Sample Double or triple monochromator  signal processing and output  Photomultiplier tube The monochromators are required to separate the weak Raman signal from the intense, nearby Rayleigh scattering. Typical lasers are Ar+ (e.g. green line, 514.5 nm) or Kr+ (e.g. yellow line, 530.9 nm).

Fourier transform Raman spectrometer The Raman instrument can be on the same bench as the FTIR. Often, a YAG:Nd3+ laser (1064 nm) is used to excite the sample, so that the excitation energy is lower than the absorption band energies of organic systems. Fluorescence is then minimized. Instruments may be combined with a microscope, or optical fibre, so that scanning over a few (microns)2 of surface area, and Raman mapping is easily performed.

Sampling techniques for Raman spectroscopy If the sample is colourless, it does not absorb a visible laser Raman spectroscopy is applicable to solids, liquids or gases. Gases: use gas cell

Liquids and solids can be sealed in a glass capillary: If the compound is colored, it can absorb the laser, get hot and decompose. Some techniques are: • Reduce the laser power (defocus) and/or change wavelength; • Dilute the sample into a KBr pellet; • Cool the sample • Rotate or oscillate the laser beam on the sample

Number of bands in a Raman spectrum As for an IR spectrum, the number of bands in the Raman spectrum for an N-atom non-linear molecule is seldom 3N-6, because: polarizability change is zero or small for some vibrations; bands overlap; combination or overtone bands are present; Fermi resonances occur; some vibrations are highly degenerate; etc…

High resolution Raman spectra can show splittings due to isotopic mass effects, for example: the 1 Raman band of CCl4 (corresponding tp the totally symmetric stretching vibration) is split into 5 components. 461.5 cm-1 is due to 35Cl4C 458.4 cm-1 is due to 35Cl337ClC 455.1 cm-1 is due to 35Cl237Cl2C What are the two question marks? Why are these bands weak?