George A. Souliotis Collaborators: M. Veselsky, G. Chubarian, L. Trache, A. Keksis, E. Martin, D.V. Shetty, S.J. Yennello Recent research results presented.

Slides:



Advertisements
Similar presentations
Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Production of rare nuclear species with proton and heavy ion beams in various regimes Martin Veselský Institute of Physics, Slovak Academy of Sciences,
Isospin dependence of nucleus-nucleus collisions
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Isospin Dependence of Intermediate Mass Fragments in 124Sn, 124Xe + 124Sn, 112Sn D. V. Shetty, A. Keksis, E. Martin, A. Ruangma, G.A. Souliotis, M. Veselsky,
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Fragment Isospin as a Probe of Heavy-Ion Collisions Symmetry term of EOS Equilibration “Fractionation” – inhomogeneous distribution of isospin Source composition.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Spectroscopy and lifetime measurements at ReA12 Hiro IWASAKI (NSCL/MSU) 7/12/2014Recoil Separator for ReA12 workshop1.
INTRODUCTION SPALLATION REACTIONS F/B ASYMMETRY FOR Au+p RANKING OF SPALLATION MODELS SUMMARY Title 24/09/2014 Sushil K. Sharma Proton induced spallation.
Germany's United States 2 Germany 0 FIFA Women’s World Cup Semifinal.
- Mid-rapidity emission in heavy ion collisions at intermediate energies - Source reconstruction - Free nucleon multiplicities - Neutron/proton ratio of.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions Yingxun Zhang ( 张英逊 ) 2012 年 8 月 10 日, 兰州 合作者: Zhuxia Li, (CIAE)
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
Recent results on the symmetry energy from GANIL A.Chbihi GANIL Why studying E sym in Fission Extracting E sym from isotopic distribution of FF Influence.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
Status of the Subtask 6 Heavy ion reactions in the Fermi-energy domain M. Veselsky, IoP SASc Bratislava Main.
George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron.
Motivation Current status Outlook This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy:
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
M. Valentina Ricciardi GSI Darmstadt, Germany New London, June 15-20, 2008 Fragmentation Reactions: Recent Achievements and Future Perspective.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Content 1.Introduction 2.Statistical Multifragmentation Model 3.Angular momentum and Coulomb effects for hot fragments in peripheral HIC at Fermi energies.
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
Observation of new neutron-deficient multinucleon transfer reactions
Spectator response to the participant blast in the reaction 197 Au+ 197 Au at 1 A GeV – results of the first dedicated experiment V. Henzl for CHARMS collaboration.
Hua Zheng a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy Density and Temperature of Fermions.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
ATLAS Research projects (DOE milestone NS8) W. Loveland Oregon State University.
Subtask 6 Heavy-ion reactions in the Fermi- energy domain Participants: IoP Task leader: Martin Veselsky
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Systematic Investigation of the Isotopic Distributions Measured in the Fragmentation of 124 Xe and 136 Xe Projectiles Daniela Henzlova GSI-Darmstadt, Germany.
Understanding the Isotopic Fragmentation of a Nuclear Collision
Transverse and elliptic flows and stopping
Ternary Fission and Neck Fragmentation
The National Superconducting Cyclotron Laboratory
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Energy Dependence of the Isotopic Composition in Nuclear Fragmentation
Nuclear excitations in nucleon removal processes
BEAM INTENSITIES WITH EURISOL
Isospin observables Observables
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Daniela Henzlova for CHARMS collaboration GSI-Darmstadt, Germany
Modification of Fragmentation Function in Strong Interacting Medium
Production of heavy neutron-rich nuclei around N=126 in multi-nucleon transfer (MNT) reactions Long ZHU (祝龙) Sino-French Institute of Nuclear Engineering.
Recent Highlights and Future Plans at VAMOS
New Transuranium Isotopes in Multinucleon Transfer Reactions
Presentation transcript:

George A. Souliotis Collaborators: M. Veselsky, G. Chubarian, L. Trache, A. Keksis, E. Martin, D.V. Shetty, S.J. Yennello Recent research results presented at: I The International Conference of Nucleon-Nucleon Collisions (NN03), Moscow, June 17-22, 2003, and The Institute of Nuclear Physics of NCSR ‘Demokritos’, Athens, Greece, June 24, 2003 a) Neutron-Rich Rare Isotope Production in the Fermi Energy Domain (Slides:1-12) b) Heavy Residue Properties, Isoscaling and N/Z Equilibration (Slides: 13-29)

Production of Neutron-Rich Nuclides (methods):  target, projectile fission  cold projectile fragmentation (medium to high energy)  deep inelastic collisions (low to medium energies)  multinucleon transfer reactions (around V b ) Present work: deep inelastic collisions at Fermi energies:  86 Kr(25MeV/nucleon) + 64 Ni, ( PLB (2002)  86 Kr Sn, 112 Sn (PRL in press, nucl-ex )  Heavy-Residue Yield Scaling (nucl-ex ) Findings:  Enhanced production of neutron-rich species, neutron skin effect  Heavy-Residue Yield Ratios probing N/Z equilibration Applications with RIB from TAMU upgrade and RIA Introduction

MARS Recoil Separator and Setup PPAC2 Stop T Silicon Telescope: ΔE 1, X,Y (Strips) ΔE 2, E residual PPAC1 Start T X,Y Production Target D1D2 D3 Wien Filter Q1 Q2 Q3 Q4 Q5 Dispersive Image Final Achromatic Image Rotatable Arm Reaction Angle: 0-12 o (selectable) MARS Acceptances: Anglular: 9 msr Momentum: 4 % Beam angle set to: 0 o ( o ) for Kr+Ni (  gr = 3.5 o ) 4 o ( o ) for Kr+Sn (  gr = 6.5 o )

Extracted physical quantities:  Velocity, Energy loss, Total Energy  Mass-to-charge ratio: A/Q B  ~ A/Q    Atomic Number Z Z ~  ΔE 1/2  Ionic charge Q Q ~ f(E,  )  Mass number A A = Q int  A/Q Yield distribution (Z,A,υ) Reactions studied:  86 Kr 22+ (25 MeV/u, 1-5 pnA) + 64 Ni (4 mg/cm 2 ) PLFs in o (  gr = 3.5 o )  86 Kr 22+ (25 MeV/u, 1-5 pnA) + 124,112 Sn (2 mg/cm 2 ) PLFs in o (  gr = 6.5 o ) Measured quantities:  ΔE 1, ΔΕ 2, Ε r, (x,y) strips  time of flight (START-STOP)  x-position at First Image (Bρ information) Experimental Details:

Gross Distributions: 86 Kr (25 MeV/u) + 64 Ni DIT/GEMINI DIT/GEMINI (filtered) DIT: L. Tassan-Got and C. Stephan, Nucl. Phys. A (1991) GEMINI: R. Chariy et al., Nucl. Phys. A (1988) EPAX: K. Summerer and B. Blank, Phys. Rev. C (2000). Isobaric Yield Distribution Z - A Distribution (relatice to Z  ) Velocity - A Distribution References:

Gross Distributions: 86 Kr (25 MeV/u) Sn -- DIT/GEMINI filtered (θ,Bρ) -- EPAX2 DIT: L. Tassan-Got and C. Stephan, Nucl. Phys. A (1991) GEMINI: R. Chariy et al., Nucl. Phys. A (1988) EPAX2: K. Summerer and B. Blank, Phys. Rev. C (2000). Isobaric Yield Distribution Z - A Distribution (relatice to Z  ) Velocity - A Distribution References:  Data  Data Corrected (θ, Bρ)

Resolutions (FWHM) : ΔZ = 0.5 ΔQ = 0.4 ΔA = 0.5 Z, Q, Α spectra (one run): 86 Kr (25 MeV/u) + 64 Ni

Mass distribution of Ge (Z=32) isotopes - 4p - 4p+1n - 4p+2n 86 Kr (25 MeV/u) + 64 Ni

Mass distributions: 86 Kr (25 MeV/u) + 64 Ni*  D ata ---- EPAX  DIT/GEMINI - 3p +1n +2n +3n -2p +1n +2n +3n +4n -1p +1n +2n +3n +4n -4p +1n +2n -5p +1n -6p Larger cross sections w.r.t. DIT/GEMINI or EPAX (Z=35-31) Cross sections similar to DIT/GEMINI or EPAX (Z  30) BrSe As ZnGa Ge * G.A. Souliotis et al., Phys. Lett. B 543, 163 (2002)

Mass distributions (cont.): 86 Kr (25 MeV/u) + 64 Ni Measured cross sections are similar to DIT/GEMINI and EPAX  Data ---- EPAX  DIT/GEMINI Cu Fe Mn Cr Ni Co

Mass distributions : 124 Sn (20 MeV/u) Sn Measured cross sections agree with DIT/GEMINI They are larger than EPAX predictions  Data ---- EPAX  DIT/GEMINI Cu Fe Mn Cr Ni Co ?

Estimates of Production Rates: 86 Kr+ 64 Ni 86 Kr beam (25MeV/u) 100 pnA 64 Ni target (20 mg/cm 2 ) * Use cross sections of this work, assume: * GSI data: M. Weber et al. Nucl. Phys. A 578 (1994) 659

Mass distributions: 86 Kr (25 MeV/u) Sn, 112 Sn*  86 Kr Sn  86 Kr Sn EPAX - 3p -2p -1p -4p -5p Larger cross sections with the n-rich 124 Sn target (Z=35-30) Se As ZnGa Ge * G.A. Souliotis et al., Phys. Rev. Lett. in press, nucl-ex/ Br

Neutron-Proton Density Calculations for 124 Sn, 112 Sn Thomas-Fermi : V.M. Kolomietz, A.I. Sanzhur et al., PRC 64, (2001) Skyrme-Hartree-Fock: J. Friedrich, P. Reinhard, PRC 33, 335 (1986) neutron skin n n p p

Mass Distribution of Germanium from 86 Kr(25MeV/u) Sn, 112 Sn, 64 Ni Ge Data using targets:  124 Sn  112 Sn  64 Ni EPAX2 Target N/Z Valley of stability 124 Sn 1.48 n-rich 118 Sn 112 Sn 1.24 n-poor 64 Ni 1.29 n-rich 60 Ni

Comparison: Data, Calculations: 86 Kr (25 MeV/u) Sn, 112 Sn*  Data DIT/GEMINI (standard) DIT/GEMINI with  (r) EPAX Calculation with neutron “skin” appears to account for the larger cross sections with the n-rich 64 Ni, 124 Sn targets * G.A. Souliotis et al., Phys. Rev. Lett. in press, nucl-ex/

Comparison: Data/EPAX : 86 Kr (25 MeV/u) + 64 Ni, 124 Sn For near-projectile fragments and above the projectile N/Z, the cross sections are larger. DIC between massive n-rich nuclei appear to be advantageous for very high N/Z RIB production

Velocity vs Z correlation 86 Kr Sn 86 Kr Sn 86 Kr + 64 Ni 86 Kr + 58 Ni  min E*/A = 2.2 MeV T = 5.3 MeV  mi n

N/Z vs Z correlation 86 Kr Sn 86 Kr Sn 86 Kr + 64 Ni 86 Kr + 58 Ni EAL: evaporation attractor line * SL: stability line * R. Charity, Phys. Rev. C 58, 1073 (1998) 86 Kr: Sn: Sn: Ni: Ni: 1.07 N/Z N/Z ~ constant

Scaling of Yield Ratios : 86 Kr+ 124 Sn, 112 Sn R 21 (N,Z) = Y 2 /Y 1 R 21 = C exp (  N ) R 21 = C´ exp (  Z )

Scaling of Yield Ratios : 86 Kr+ 64 Ni, 58 Ni R 21 (N,Z) = Y 2 /Y 1 R 21 = C exp (  N ) R 21 = C´ exp (  Z )

Isoscaling Parameters: ,  86 Kr+ 64 Ni, 58 Ni R 21 = C exp (  N ) R 21 = C´ exp (  Z ) 86 Kr+ 124 Sn, 112 Sn  =0.43  =0.27  = – 0.34  = – 0.51

Origin of Isotopic Scaling: Grand Canonical Ensemble (equilibrium limit): Fragment Yield: * Y(N,Z) = F(N,Z) exp{B(N,Z)/T} exp { (N  n +Z  p )/T } R 21 (N,Z) = Y 2 (N,Z) / Y 1 (N,Z) = C exp (  N +  Z) (Isoscaling) with:  =  n /T  =  p /T  n   S n  p   S p  = 4 C sym /T ( (Z 1 /A 1 ) 2 – (Z 2 /A 2 ) 2 ) * J. Randrup and S. Koonin, Nucl. Phys. A 356, 223 (1981) M. B. Tsang et al. Phys. Rev. C 64, (2001) A.S. Botvina et al. Phys. Rev. C 65, (2002) Extracted Parameters:

Heavy Residue Isoscaling and N/Z equilibration R 21 ~ exp (  N ) N/Z 86 Kr+ 124 Sn => [ 210 Rn] Kr+ 112 Sn => [ 198 Rn] 1.30  (N/Z) = 0.14 N/Z equilibrated quasi-projectile  = 4 C sym /T ( (Z 1 /A 1 ) 2 – (Z 2 /A 2 ) 2 ) *  = 8 C sym /T (Z/A) 3 ave  (N/Z) * M. B. Tsang et al. Phys. Rev. C 64, (2001) A.S. Botvina et al. Phys. Rev. C 65, (2002) 86 Kr+ 124 Sn, 112 Sn Evolution towards N/Z equilibration of quasi-projectile** ** G.A. Souliotis et al., nucl-ex/ , Phys. Rev. C submitted

Velocity and E* vs mass correlations 86 Kr Sn 86 Kr Sn  min E*/A = 2.2 MeV T = 5.3 MeV E*/A max observed

Isobaric Scaling of Yield Ratios : R 21 (N,Z) = Y 2 /Y 1 R 21 = C exp (  N +  Z) Rearrange with  ´= (  +  )/2 *  ´= (  -  )/2 R 21 = C exp {  ´A +  ´(N  Z)} = C exp (  ´A + 2  ´t z ) 86 Kr+ 124 Sn, 112 Sn data   =0.47 * A.S. Botvina et al. Phys. Rev. C 65, (2002)  = 0.47

Heavy Residue Isobaric Scaling and N/Z equilibration R 21 ~ exp{  (N  Z)} N/Z 86 Kr+ 124 Sn => [ 210 Rn] Kr+ 112 Sn => [ 198 Rn] 1.30  = 4C sym /T (Z/A) 2 ave  (N/Z) qp ** 86 Kr+ 124 Sn, 112 Sn  Isobaric approach  Isotopic approach Evolution towards N/Z equilibration of quasi-projectile**  (N/Z) = 0.14 N/Z equilibrated quasi-projectile N/Z equilibration : continuous process strongly correlated with E* Intermediate Energy: S.J. Yennello et al, Phys. Lett. B 321, 15 (1994) (IMF yield ratios) B.A. Lee and S.J. Yennello, Phys. Rev. C 52, 1746 (1995) H. Johnston et al., Phys. Lett. B 371, 186 (1996) ** G.A. Souliotis et al., nucl-ex/ , Phys. Lett. B, submitted

Early N/Z equilibration studies N/Z equilibrated quasi-projectiles Evolution towards N/Z equilibration 58 Ni, 64 Ni (8.5MeV/u) U (2) 92 Mo(15MeV/u) U, 154 Sm (1) N/Z 58 Ni measured derived 64 Ni measured derived Derived from data using evap. code (1) M. Petrovici et al., Nucl. Phys. A 477, 277 (1988) (2) R. Planeta et al., Phys. Rev. C 38, 195 (1988) DIC Model (Randrup)

Measured charge, mass, velocity distributions of residues from: 86 Kr (25 MeV/u) + 64 Ni, 124 Sn, 112 Sn, Studies inside  gr Reaction simulations: DIT/Gemini: reasonable description, Effect of the Neutron Skin (very n-rich products) Scaling of Heavy-Residue Yields: N/Z Equilibration Plans for future work :  Investigate reactions with heavier targets: 208 Pb, 238 U (look ~  gr )  Study the process of N/Z equilibration, E/A dependence * TAMU Cyclotron White Paper in : Tools at Texas A&M:  Superconducting Solenoid Rare Isotope Line (Large Acceptance)  MARS Line (High Resolution)  Future: Re-accelerated beams via a Gas-Cell based ISOL concept* Summary and Outlook Application in studies using high-N/Z beams from RIA