EE663 Image Processing Edge Detection 2 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.

Slides:



Advertisements
Similar presentations
EDGE DETECTION ARCHANA IYER AADHAR AUTHENTICATION.
Advertisements

Instructor: Mircea Nicolescu Lecture 6 CS 485 / 685 Computer Vision.
DREAM PLAN IDEA IMPLEMENTATION Introduction to Image Processing Dr. Kourosh Kiani
1Ellen L. Walker Edges Humans easily understand “line drawings” as pictures.
Edge Detection. Our goal is to extract a “line drawing” representation from an image Useful for recognition: edges contain shape information –invariance.
EE663 Image Processing Edge Detection 1
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Lecture 4 Edge Detection
CSSE463: Image Recognition Day 6 Yesterday: Yesterday: Local, global, and point operators all operate on entire image, changing one pixel at a time!! Local,
Computer Vision Group Edge Detection Giacomo Boracchi 5/12/2007
EE663 Image Processing Edge Detection 5 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
Edge detection. Edge Detection in Images Finding the contour of objects in a scene.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
Canny Edge Detector1 1)Smooth image with a Gaussian optimizes the trade-off between noise filtering and edge localization 2)Compute the Gradient magnitude.
Edge Detection Phil Mlsna, Ph.D. Dept. of Electrical Engineering
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
CS485/685 Computer Vision Dr. George Bebis
Segmentation (Section 10.2)
Filters and Edges. Zebra convolved with Leopard.
EE663 Image Processing Edge Detection 3 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
Neighborhood Operations
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30 – 11:50am.
Edge Detection & Image Segmentation Dr. Md. Altab Hossain Associate Professor Dept. of Computer Science & Engineering, RU 1.
Discrete Images (Chapter 7) Fourier Transform on discrete and bounded domains. Given an image: 1.Zero boundary condition 2.Periodic boundary condition.
Edges. Edge detection schemes can be grouped in three classes: –Gradient operators: Robert, Sobel, Prewitt, and Laplacian (3x3 and 5x5 masks) –Surface.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski, Ch 4.1.2, From Sandlot.
Chapter 10, Part I.  Segmentation subdivides an image into its constituent regions or objects.  Image segmentation methods are generally based on two.
Instructor: S. Narasimhan
CS654: Digital Image Analysis Lecture 24: Introduction to Image Segmentation: Edge Detection Slide credits: Derek Hoiem, Lana Lazebnik, Steve Seitz, David.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
EE 4780 Edge Detection.
Many slides from Steve Seitz and Larry Zitnick
October 7, 2014Computer Vision Lecture 9: Edge Detection II 1 Laplacian Filters Idea: Smooth the image, Smooth the image, compute the second derivative.
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
Edge Detection and Geometric Primitive Extraction Jinxiang Chai.
CSSE463: Image Recognition Day 6 Yesterday: Local, global, and point operators use different context, but all Yesterday: Local, global, and point operators.
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities May 2, 2005 Prof. Charlene Tsai.
Course 5 Edge Detection. Image Features: local, meaningful, detectable parts of an image. edge corner texture … Edges: Edges points, or simply edges,
Lecture 04 Edge Detection Lecture 04 Edge Detection Mata kuliah: T Computer Vision Tahun: 2010.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Edge Segmentation in Computer Images CSE350/ Sep 03.
Computer Vision Image Features Instructor: Dr. Sherif Sami Lecture 4.
Instructor: Mircea Nicolescu Lecture 7
Instructor: Mircea Nicolescu Lecture 5 CS 485 / 685 Computer Vision.
Digital Image Processing Week V Thurdsak LEAUHATONG.
Digital Image Processing CSC331
Image Features (I) Dr. Chang Shu COMP 4900C Winter 2008.
Sliding Window Filters Longin Jan Latecki October 9, 2002.
1 Edge Operators a kind of filtering that leads to useful features.
EDGE DETECTION Dr. Amnach Khawne. Basic concept An edge in an image is defined as a position where a significant change in gray-level values occur. An.
Edge Detection slides taken and adapted from public websites:
Edge Detection Phil Mlsna, Ph.D. Dept. of Electrical Engineering Northern Arizona University.
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
Edge Detection CS485/685 Computer Vision Dr. George Bebis.
Edge Detection CS 678 Spring 2018.
Jeremy Bolton, PhD Assistant Teaching Professor
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Dr. Chang Shu COMP 4900C Winter 2008
Edge Detection Today’s reading
a kind of filtering that leads to useful features
a kind of filtering that leads to useful features
Edge Detection Today’s reading
Lecture 2: Edge detection
Edge Detection Today’s reading
Edge Detection Today’s readings Cipolla and Gee Watt,
Canny Edge Detector Smooth image with a Gaussian
Lecture 2: Edge detection
IT472 Digital Image Processing
IT472 Digital Image Processing
Presentation transcript:

EE663 Image Processing Edge Detection 2 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals

2 Image Features Image features – may appear in two contexts: −Global properties of the image (average gray level, etc) – global features −Parts of the image with special properties (line, circle, textured region) – local features Here, assume second context for image features: −Local, meaningful, detectable parts of the image Detection of image features −Detection algorithms – produce feature descriptors −Example – line segment descriptor: coordinates of mid-point, length, orientation

3 Edge Detection Definition of edges −Edges are significant local changes of intensity in an image. −Edges typically occur on the boundary between two different regions in an image.

4 Edge Detection Examples:

5 Edge Detection Goal of edge detection −Produce a line drawing of a scene from an image of that scene. −Important features can be extracted from the edges of an image (e.g., corners, lines, curves). −These features are used by higher-level computer vision algorithms (e.g., segmentation, recognition).

6 Edge Detection Not that easy:

7 Edge Detection What causes intensity changes? −Geometric events −object boundary (discontinuity in depth and/or surface color and texture) −surface boundary (discontinuity in surface orientation and/or surface color and texture) −Non-geometric events −specularity −shadows (from other objects or from the same object) −inter-reflections

8 Edge Detection Edge descriptors −Edge normal: unit vector in the direction of maximum intensity change. −Edge direction: unit vector to perpendicular to the edge normal. −Edge position or center: the image position at which the edge is located. −Edge strength: related to the local image contrast along the normal.

9 Modeling Intensity Changes Edges can be modeled according to their intensity profiles: Step edge: −the image intensity abruptly changes from one value to one side of the discontinuity to a different value on the opposite side. Ramp edge: −a step edge where the intensity change is not instantaneous but occurs over a finite distance.

10 Modeling Intensity Changes Ridge edge: −the image intensity abruptly changes value but then returns to the starting value within some short distance −generated usually by lines

11 Modeling Intensity Changes Roof edge: −a ridge edge where the intensity change is not instantaneous but occurs over a finite distance −generated usually by the intersection of surfaces

12 Edge Detection The four steps of edge detection: −Smoothing: suppress as much noise as possible, without destroying the true edges. −Enhancement: apply a filter that responds to edges in the image −Detection: determine which edge pixels should be discarded as noise and which should be retained (usually, thresholding provides the criterion used for detection). −Localization: determine the exact location of an edge (sub-pixel resolution might be required for some applications, that is, estimate the location of an edge to better than the spacing between pixels). Edge thinning and linking are usually required in this step.

13 Edge Detection Edge detection using derivatives −Calculus describes changes of continuous functions using derivatives. −An image is a 2D function, so operators describing edges are expressed using partial derivatives. −Points which lie on an edge can be detected by either: −detecting local maxima or minima of the first derivative −detecting the zero-crossing of the second derivative

14 Edge Detection Edge detection using derivatives – cont.

15 Edge Detection Differencing 1D signals: −To compute the derivative of a signal, we approximate the derivative by finite differences Computing the 1 st derivative:

16 Edge Detection Computing the 1 st derivative – cont. Backward difference Forward difference Central difference

17 Edge Detection Computing the 1 st derivative – cont. −Examples using the edge models and the mask [ ] (centered about x):

18 Edge Detection Computing the 2 nd derivative: −This approximation is centered about x + 1 −By replacing x + 1 by x we obtain:

19 Edge Detection Computing the 2 nd derivative – cont.

20 Edge Detection Computing the 2 nd derivative – cont. −Examples using the edge models:

21 Edge Detection Image derivatives: Image I

22 Edge Detection Image derivatives: Image I

23 Derivatives and Noise Derivatives are strongly affected by noise −obvious reason: image noise results in pixels that look very different from their neighbors −The larger the noise - the stronger the response What is to be done? −Neighboring pixels look alike −Pixel along an edge look alike −Image smoothing should help −Force pixels different to their neighbors (possibly noise) to look like neighbors

24 Derivatives and Noise Increasing noise −Need to perform image smoothing as a preliminary step −Generally – use Gaussian smoothing

25 Edge Detection Gradient operators −Roberts −Prewitt −Sobel Gradient of Gaussian (Canny) Laplacian of Gaussian (Marr-Hildreth) Facet Model Based Edge Detector (Haralick) Possible detectors:

26 Edge Detection Using the Gradient Definition of the gradient: To save computations, the magnitude of gradient is usually approximated by:

27 Edge Detection Using the Gradient Properties of the gradient: −The magnitude of gradient provides information about the strength of the edge −The direction of gradient is always perpendicular to the direction of the edge Main idea: −Compute derivatives in x and y directions −Find gradient magnitude −Threshold gradient magnitude