Evolution of Galaxy Properties from High Redshift to Today.

Slides:



Advertisements
Similar presentations
Star formation histories and environment Bianca M. Poggianti INAF – Osservatorio Astronomico di Padova WE ARE ALL AFTER THE BIG PICTURE: 1)To what extent,
Advertisements

Malaysia 2009 Sugata Kaviraj Oxford/UCL Collaborators: Sukyoung Yi, Kevin Schawinski, Eric Gawiser, Pieter van Dokkum, Richard Ellis Malaysia 2009 Early-type.
Quenched and Quenching Galaxies at Low to High Redshifts S.M. Faber & UCSC and CANDELS collaborators Dekel60 Fest December 13, 2011 M31: UV GALEX.
Kevin Bundy, Caltech The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star-Forming Galaxies Kevin Bundy R. S. Ellis,
Lecture #4 Observational facts Olivier Le Fèvre – LAM Cosmology Summer School 2014.
Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
HWR Princeton, 2005 Observing the Assembly of Galaxies Hans-Walter Rix Max-Planck-Institute for Astronomy Heidelberg.
Multivariate Properties of Galaxies at Low Redshift.
Massive galaxies in massive datasets M. Bernardi, J. Hyde and E. Tundo M. Bernardi, J. Hyde and E. Tundo University of Pennsylvania.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Downsizing & Galaxy Formation 2 nd Mitchell Symposium - April 2006 P. McCarthy OCIW Gemini Deep Deep Survey Team.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
A Wide Area Survey for High- Redshift Massive BzK Galaxies X.Kong, M.Onodera, C.Ikuta (NAOJ), K.Ohta (Kyoto), N.Tamura (Durham), A.Renzini, E.Daddi, L.
Bruno Henriques Claudia Maraston & the Marie Curie Excellence Team Guinevere Kauffmann, Pierluigi Monaco Evolution of the Near-Infrared Emission from Galaxies:
High Redshift Massive Galaxies (BzKs & EIS-Deep3a and COSMOS Xu KONG collaborators :
High Redshift Galaxies (Ever Increasing Numbers).
C. Halliday, A. Cimatti, J. Kurk, M. Bolzonella, E. Daddi, M. Mignoli, P. Cassata, M. Dickinson, A. Franceschini, B. Lanzoni, C. Mancini, L. Pozzetti,
G. Zamorani On behalf of the VVDS-SWIRE collaboration PI : Carole Lonsdale PI O. Le Fèvre Co-PI G. Vettolani Evolutionary properties of galaxies and mass.
Jerusalem 2004 Hans-Walter Rix - MPIA The Evolution of the High-z Galaxy Populations.
Establishing the Connection Between Quenching and AGN MGCT II November, 2006 Kevin Bundy (U. of Toronto) Caltech/Palomar: R. Ellis, C. Conselice Chandra:
Star Formation Downsizing: Testing the Role of Mergers and AGN Kevin Bundy (University of Toronto) Richard Ellis (Caltech), Tommaso Treu (UCSB), Antonis.
FMOS で探る Extremely Red Universe II. FMOS で探る Extremely Red Universe II. Extremely Red Universe Probed with FMOS Extremely Red Universe Probed with FMOS.
The assembly of stellar mass during the last 10 Gyr: VVDS results B.Garilli on behalf of the VVDS consortium 1 topic, 4 approaches, concordant results.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
The Gas Properties of Galaxies on and off of a Star-Forming Sequence David Schiminovich + GALEX Science Team Columbia University.
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Deciphering the CIB 12 Oct 2012 Banyuls MODELING COUNTS AND CIBA WITH MAIN SEQUENCE AND STARBURST GALAXIES Matthieu Béthermin CEA Saclay In collaboration.
Science Achievements of the DEEP2/AEGIS survey by S. M. Faber and the DEEP & AEGIS Teams Supported by CARA, UCO/Lick Observatory, the National Science.
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
The Environmental Effect on the UV Color-Magnitude Relation of Early-type Galaxies Hwihyun Kim Journal Club 10/24/2008 Schawinski et al. 2007, ApJS 173,
1 On star-formation compactness & bulges: the ALMA view  IR (z~2) =  IR (z~0) x 6  IR (z~4) =  IR (z~0) x 12  IR (z) =  IR (z~0) x (1+z) 2.5 vs 
1 The mid-infrared view of red-sequence galaxies Jongwan Ko Yonsei Univ. Observatory/KASI Feb. 28, 2012 The Second AKARI Conference: Legacy of AKARI: A.
Naoyuki Tamura (University of Durham) The Universe at Redshifts from 1 to 2 for Early-Type Galaxies ~ Unveiling “Build-up Era” with FMOS ~
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Galaxy and Quasar Clustering at z=1 Alison Coil University of Arizona April 2007.
MNRAS, submitted. Galaxy evolution Evolution in global properties reasonably well established What drives this evolution? How does it depend on environment?
Galaxy Formation: What are we missing? C. Steidel (Caltech) Quenching  : How to Move from the Blue Cloud  Through the Green Valley  and to the Red Sequence.
The relation between the galaxy stellar mass distribution and the mass of its hosting halo BENEDETTA VULCANI KAVLI IPMU What Regulates Galaxy Evolution?
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
Clustering of BzK-selected galaxies in the COSMOS field Xu KONG collaborators : A. Renzini, E. Daddi, N. Arimoto, A. Cimatti , COSMOS.
Clustering and dusty high-z galaxies Emanuele Daddi ESO-Garching (  NOAO-Tucson) Properties of K-selected z=2 galaxies (K20/GOODS/other surveys)  dusty.
A Wide Area Survey for High-Redshift Massive Galaxies Number Counts and Clustering of BzKs and EROs X.Kong, M.Onodera, C.Ikuta (NAOJ), K.Ohta (Kyoto),
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
SWIRE view on the "Passive Universe": Studying the evolutionary mass function and clustering of galaxies with the SIRTF Wide-Area IR Extragalactic Survey.
How are galaxies influenced by their environment? rachel somerville STScI Predictions & insights from hierarchical models with thanks to Eric Bell the.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Forming Proto-Elliptical z>2 ? N.Arimoto (NAOJ) Subaru/Sup-Cam C.Ikuta (NAOJ) X.Kong (NAOJ) M.Onodera (Tokyo) K.Ohta (Kyoto) N.Tamura (Durham)
The cosmic evolution of star formation and metallicity over the last 13 billion years (an observational perspective) Andrea Cimatti (INAF - Osservatorio.
Claudia Maraston Institute of Cosmology and Gravitation University of Portsmouth - UK Stellar Population Models Interpreting observations Colouring simulations.
The GOOD NICMOS Survey (GNS): Observing Massive Galaxies at z > 2 Christopher J. Conselice (University of Nottingham) with Asa Bluck, Ruth Gruethbacher,
What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia.
1 + z SFR (M sun yr -1 Mpc -3) Hopkins 2004 Evolution of SFR density with redshift, using a common obscuration correction where necessary. The points are.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
The Mass-Dependent Role of Galaxy Mergers Kevin Bundy (UC Berkeley) Hubble Symposium March, 2009 Masataka Fukugita, Richard Ellis, Tom Targett Sirio Belli,
Exploring the formation epoch of massive galaxies O.Almaini, S. Foucaud, C. Simpson, I. Smail, K. Sekiguchi, M. Watson, M. Page, P. Hirst Michele Cirasuolo.
Observing the formation and evolution of massive galaxies
Nobunari Kashikawa (National Astronomical Observatory of Japan)
The Presence of Massive Galaxies at z>5
Emanuele Daddi ESO K20 survey PI: A Cimatti (Arcetri) Collaborators:
Specific Star Formation Rates to z=1.5
Modeling the dependence of galaxy clustering on stellar mass and SEDs
Presentation transcript:

Evolution of Galaxy Properties from High Redshift to Today

AGNs: Where do they live? In M*>10 10 M . In M*>10 10 M . Morphologically similar to early- types. Morphologically similar to early- types. OTOH, recent SF similar to late- types (esp. in strong AGN). OTOH, recent SF similar to late- types (esp. in strong AGN). Kauffmann et al 2003

AGNs and the red sequence AGNs roughly occupy “green valley”. AGNs roughly occupy “green valley”. Black hole growth occuring in M * ~ M  galaxies. Black hole growth occuring in M * ~ M  galaxies. Same M * as transition in colors, SFRs, etc. Same M * as transition in colors, SFRs, etc. Cause or effect? Cause or effect? Kauffmann et al 2004

Clustering: 2PCF  =(r/r 0 ) - ,  ~1.8 and r 0 ~5 Mpc/h.  =(r/r 0 ) - ,  ~1.8 and r 0 ~5 Mpc/h. Departs significantly from pure power law. Departs significantly from pure power law. Red galaxies have steeper x slope. Red galaxies have steeper x slope. Mild luminosity dependence, strongest at luminous end. Mild luminosity dependence, strongest at luminous end. Zehavi et al. 2003, 2004 Norberg et al 2001

Halo Occupation Distribution HOD = P(N g,M h ). HOD = P(N g,M h ).  made up of “1-halo” and “2-halo” terms.  made up of “1-halo” and “2-halo” terms. From this, get bias: b ≡(  gg /  mm ) 1/2. From this, get bias: b ≡(  gg /  mm ) 1/2. has character- istic shape; can derive by matching  (r). has character- istic shape; can derive by matching  (r). Yang et al 2004 Zehavi et al 2003

Conditional Luminosity Function  (L|M)dL: Luminosity fcn in bins of halo mass.  (L|M)dL: Luminosity fcn in bins of halo mass. Tune  (L|M) to reproduce LF,  (L), and T-F. Tune  (L|M) to reproduce LF,  (L), and T-F. Depends on cosmology, or anything that affects halo abundance. Depends on cosmology, or anything that affects halo abundance. Yang et al 2003

Evolution of Galaxy Properties from High Redshift to Today

Galaxy Surveys: Optical & NIR DEEP2 AEGIS MS1054 COMBO17 MUSYC Steidel ELAIS-S1 From Mara Salvato’s web page

Lilly-Madau Plot Fair amount of scatter, but for z>1 it’s at the ~50% level now. Fair amount of scatter, but for z>1 it’s at the ~50% level now. Half the stars formed by z~1.7. Half the stars formed by z~1.7. Many issues: Dust? IMF? Sample overlap? Many issues: Dust? IMF? Sample overlap? Fardal et al 2006

SFR vs. M* buildup Something weird: ∫ >z SFR >  * (z). Something weird: ∫ >z SFR >  * (z). Globally top- heavy IMF? Globally top- heavy IMF? Pop synth models wrong? Pop synth models wrong? Fardal et al 2006

0 < z < 1 : Red sequence, blue cloud, green valley ? Cirasuolo et al (UKIDSS) Franzetti et al (VVDS) Color bimodality to z ~ 1 (Bell et al. 2004) Disappears beyond z ~ 1.5 ? (Wuyts et al. 2006, Cirasuolo et al. 2006…) Reliability ? Contamination ? See also the degeneracy of ERO colors (e.g. Cimatti et al. 2002, 2003, Moustakas et al. 2004, Stern et al. 2006) Late-type Early-type 0.6<z<0.8

Beyond z ~ 1 : optical selections 1 < z < 4+ = 10.3 ± 0.5 = 30 ± 20 Msun/yr 0 < E(B-V) < 0.3  by construction 1/3 < Z/Zsun < 1 r 0 ~ 3-5 h -1 Mpc (Steidel et al , Adelberger et al. 2004, Reddy et al. 2005, Shapley et al. 2003, 2005, Erb et al. 2006) BM/BX/LBG Color-selected Bulk : star-forming galaxies 1 < z < 4 Wider range of colors (ages/dust) Larger surface density (e.g. I < 24; Le Fèvre et al. 2005) Pure flux-limited optical selection No color cuts

Beyond z ~ 1 : NIR-selected star-forming galaxies 1 < z < 3 SFR up to ~ 200+ Msun/yr Most sBzKs and some DRGs are ULIRGs Stellar masses up to ~ Msun High specific SFR Nearly solar metallicity Merger morphology in rest-frame UV sBzK & DRGs strongly clustered (r 0 ~ 8-11 h -1 Mpc) Cimatti et al. 2002, 2003, Daddi et al. 2004a, 2004b, 2005; De Mello et al 2004, Dannerbauer et al. 2005, Kong et al. 2006, Franx et al. 2003, Forster-Schreiber et al van Dokkum et al. 2005, Webb et al. 2006, Papovich et al., Doherty et al., Yan et al. Grazian et al. 2006, Quadri et al. 2006, Foucaud et al, Grazian et al Dusty EROs Star-forming BzKs (sBzK) BzKBzK DRGs

Passive systems Gyr old SFH : z(SF onset) > starburst M(stars) > Msun Strongly clustered McCarthy et al. 2004, Daddi et al. 2005, Saracco et al Longhetti et al. 2005, Kong et al. 2006, Kriek et al Old/massive systems at z > 4-5 ? (Mobasher et al. 2005, Dunlop et al. 2006, Rodighiero et al. 2006, Wiklind et al. 2006, Mancini et al. ) Cimatti et al Beyond z ~ 1 : NIR-selected old/passive systems to z ~ 2.5 Kriek et al. 2006

Optical color -selected (BM/BX, R < 25.5) K-selected (K < 20, Vega) Example : BM/BX vs BzK (1.4<z<2.5) BM/BX can miss up to 60%-70% of the K-selected with K 21, Reddy et al. 2005) BM/BX selects 3% (23%) with M>10 11 (>5x10 10 ) Msun (similar for DRGs; van Dokkum et al. 2006) To K~22, optically selected contribute to most of the SFD traced by OPT+NIR (Reddy et al. 2005) Pure flux-limited optical surveys selects more galaxies vs optical color selection (Le Fèvre et al. 2005) Passive Star forming

OPTICAL SELECTION NEAR-IR SELECTION Narrow-band & Slitless

Stellar mass functions  High-mass tail : dominated by ETGs to z~1-1.5  High-mass tail : very little evolution (0<z<0.8)  N(ETGs, z) mirrored by N(star-forming, z)  No much room for “dry” merging at 0<z<1  Downsizing (Cowie et al. 96, see also Gavazzi et al. 1996) Fontana et al. 2004,2006, Drory et al. 2004,2005, Bundy et al. 2005, Caputi et al. 2006, Pannella et al. 2006, Franceschini et al Borch et al. 2006… Drory et al Bundy et al (DEEP2 + K) Caveat on TP-AGB stars (Maraston)

Morphology evolution Rapid increase of mergers with redshift Early and rapid merging (z>1.5) : formation mechanism of massive galaxies (Conselice 2006) Hubble sequence and morphological fractions already in place at z~1 (HDF, MDS, GOODS, HUDF…) (Griffith et al., Abraham et al, Conselice et al,…) Cassata et al (K20+GOODS)

The role of environment (0<z<1.5) Downsizing more pronounced in the highest density environments Color-density relation Cucciati et al (VVDS) Bundy et al (DEEP2 + K) C-D relation stronger for high luminosity C-D relation weakens for increasing z (but see Quadri et al. 2006) Kodama et al. 2004, Yee et al. 2005, Cooper et al. 2006, Ilbert et al. 2006, Gerke et al Stellar mass function