Mapping Influenza A Virus Transmission Networks with Whole Genome Comparisons (Methods)‏ Adrienne Breland TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA.

Slides:



Advertisements
Similar presentations
Will the Avian Flu Become the Next Epidemic?
Advertisements

Topology and Dynamics of Complex Networks FRES1010 Complex Adaptive Systems Eileen Kraemer Fall 2005.
Complex Networks for Representation and Characterization of Images For CS790g Project Bingdong Li 9/23/2009.
RNA-Seq based discovery and reconstruction of unannotated transcripts
FUNNEL: Automatic Mining of Spatially Coevolving Epidemics Yasuko Matsubara, Yasushi Sakurai (Kumamoto University) Willem G. van Panhuis (University of.
Blast outputoutput. How to measure the similarity between two sequences Q: which one is a better match to the query ? Query: M A T W L Seq_A: M A T P.
Swine flu.
Network Mapping of Large Data Sets Al Ozonoff, Ph.D. Joel Bernanke, M.Sc. Boston University School of Public Health.
School of Information University of Michigan Network resilience Lecture 20.
Summer Bioinformatics Workshop 2008 Comparative Genomics and Phylogenetics Chi-Cheng Lin, Ph.D., Professor Department of Computer Science Winona State.
Avian Influenza – The Bird Flu
INFLUENZA. VIROLOGY OF INFLUENZA Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks.
University of Buffalo The State University of New York Spatiotemporal Data Mining on Networks Taehyong Kim Computer Science and Engineering State University.
Presentation Topic : Modeling Human Vaccinating Behaviors On a Disease Diffusion Network PhD Student : Shang XIA Supervisor : Prof. Jiming LIU Department.
State of the World Marian Baker BIO-340. An emergent disease is one that has appeared in a population for the first time, or that may have existed previously.
Avian Influenza (plagiarised) Roger Bowers. Avian Influenza Bird flu Avian influenza is a disease of birds caused by influenza viruses closely related.
From Complex Networks to Human Travel Patterns Albert-László Barabási Center for Complex Networks Research Northeastern University Department of Medicine.
Clinical Outcomes of Influenza Infection Asymptomatic Asymptomatic Symptomatic Symptomatic  Respiratory syndrome - mild to severe  Involvement of major.
Avian Influenza - Pandemic Threat ? Reinhard Bornemann.
Global topological properties of biological networks.
Influenza A Virus Pandemic Prediction and Simulation Through the Modeling of Reassortment Matthew Ingham Integrated Sciences Program University of British.
Utilizing Fuzzy Logic for Gene Sequence Construction from Sub Sequences and Characteristic Genome Derivation and Assembly.
Detecting the Domain Structure of Proteins from Sequence Information Niranjan Nagarajan and Golan Yona Department of Computer Science Cornell University.
Sequence comparison: Local alignment
EPIDEMIOLOGY AND PREVENTION OF INFLUENZA. Introduction Unique epidemiology: – Seasonal attack rates of 10% to 30% – Global epidemics Influenza viruses.
EPIDEMIOLOGY AND PREVENTION OF INFLUENZA. Introduction Unique epidemiology: – Seasonal attack rates of 10% to 30% – Global pandemics Influenza viruses.
Information theoretic interpretation of PAM matrices Sorin Istrail and Derek Aguiar.
Developing a vaccine and how a pandemic could occur.
Medical geography is a new area of health research that is a hybrid between geography and medicine, dealing with the geographic aspects of health and.
Structural Bioinformatics R. Sowdhamini National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore, INDIA.
Human Travel Patterns Albert-László Barabási Center for Complex Networks Research, Northeastern U. Department of Medicine, Harvard U. BarabasiLab.com.
Energy-Aware Scheduling with Quality of Surveillance Guarantee in Wireless Sensor Networks Jaehoon Jeong, Sarah Sharafkandi and David H.C. Du Dept. of.
Genome alignment Usman Roshan. Applications Genome sequencing on the rise Whole genome comparison provides a deeper understanding of biology – Evolutionary.
What do you need to know? Are you at risk? How do you protect yourself? SWINE FLU Partnership for Environmental Education and Rural Health peer.tamu.edu.
© 2005 Prentice Hall Inc. / A Pearson Education Company / Upper Saddle River, New Jersey “Bird flu”  Caused by avian influenza virus (AIV)  Endemic.
P ANDEMICS T HROUGHOUT H ISTORY. A pandemic is defined as an unusually high outbreak of a new infectious disease that is spreading through the human population.
Showcase /06/2005 Towards Computational Epidemiology Using Stochastic Cellular Automata in Modeling Spread of Diseases Sangeeta Venkatachalam, Armin.
Avian Influenza H5N1 Prepared by: Samia ALhabardi.
The Informatics Crystal Ball: Mining the Past to Predict the Species Jump Event 19 April 2011 Richard H. Scheuermann, Ph.D. Department of.
Influenza H1N1 A: A close insight Dr. Mustafa Ababneh Molecular Virologist.
Emerging Diseases Lecture 12: Influenza Virus and the 1918 Pandemic 12.1 Overview 12.2 The pathogen-Influenza Virus A 12.3: Naming System 12.4: A Disease.
The New Influenza A/H1N1 Isabelle Thomas May 28-29, 2009 Brussels,
ASSEMBLY AND ALIGNMENT-FREE METHOD OF PHYLOGENY RECONSTRUCTION FROM NGS DATA Huan Fan, Anthony R. Ives, Yann Surget-Groba and Charles H. Cannon.
P ANDEMICS T HROUGHOUT H ISTORY. A pandemic is defined as an unusually high outbreak of a new infectious disease that is spreading through the human population.
“Neutralizing Antibodies Derived from the B Cells of 1918 Influenza Pandemic Survivors” (Yu et. al) Daniel Greenberg.
Epidemiology of Swine Influenza H1N1 Amman 5/5/2009 Dr. Labib Sharif Associate Prof. Of Epidemiology Faculty of Veterinary Medicine Jordan University of.
Exact Propagation Modeling of Permutation-Scanning Worms Parbati Kumar Manna Dr. Shigang Chen Dr. Sanjay Ranka University of Florida.
Influenza A (H1N1). What is Influenza A (H1N1)? Influenza A(H1N1) is caused by a novel virus that resulted from the reassortment of 4 viruses from pigs,
Epidemic spreading on preferred degree adaptive networks Shivakumar Jolad, Wenjia Liu, R. K. P. Zia and Beate Schmittmann Department of Physics, Virginia.
Epidemic Profiles and Defense of Scale-Free Networks L. Briesemeister, P. Lincoln, P. Porras Presented by Meltem Yıldırım CmpE
Classification of Avian Migration Patterns Aparna Pal.
Structures of Networks
Emerging Diseases Lecture 12: Influenza Virus and the 1918 Pandemic
Emerging Diseases Lecture 12: Influenza Virus and the 1918 Pandemic
Influenza Virus: Evolution in real time
Sequence comparison: Local alignment
Influenza Vaccines MedCh 401 Lecture 5 19May06 KL Vadheim Lecture 4.
Dynamic Routing Using Inter Capsule Routing Protocol Between Capsules
الوحدة العلمية ووحدة الدعم الفني في المختبر المركزي
En Wang 1,2 , Yongjian Yang 1 , and Jie Wu 2
Classes will begin shortly
Epidemiological Modeling to Guide Efficacy Study Design Evaluating Vaccines to Prevent Emerging Diseases An Vandebosch, PhD Joint Statistical meetings,
Global Patterns of Influenza A Virus in Wild Birds
Topology and Dynamics of Complex Networks
Emerging Diseases Lecture 12: Influenza Virus and the 1918 Pandemic
Feifei Li, Ching Chang, George Kollios, Azer Bestavros
A Web-based Interactive Genome Library for Surveillance, Detection, Characterization and Drug-Resistance Monitoring of Influenza Virus Infection in the.
2009 H1N1 Influenza Mayo Clinic Proceedings
Susceptible, Infected, Recovered: the SIR Model of an Epidemic
Role for migratory wild birds in the global spread of avian influenza H5N8 Science Volume 354(6309): October 14, 2016 Published by AAAS.
Presentation transcript:

Mapping Influenza A Virus Transmission Networks with Whole Genome Comparisons (Methods)‏ Adrienne Breland TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Goal - to characterize global Influenza A Virus transmission as a complex network TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Russell (2008) The global circulation of seasonal influenza A (H3N2) viruses Proposed global H3N2 circulation

TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Major Questions Data Genome Comparison Method TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Outline

Motivation Major Questions Data Genome Comparison Method TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Outline

Motivation Delineating real disease networks is difficult – Infection tracing: Detecting exact transmission links – Contact tracing: All potential transmission contacts – Diary Based: Subject records all contacts TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Infection tracingContact tracingDiary Based Keeling M & K Eames (2005) Networks and epidemic models. J. R. Soc. Interface 2:

Motivation Delineating real disease networks is very useful TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Delineating real disease networks is very useful -targeting an attack TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Delineating real disease networks is very useful TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási

Motivation Delineating real disease networks is very useful TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT al_network.png

Motivation Delineating real disease networks is very useful -correlation coefficients

Motivation Delineating real disease networks is very useful -detecting more probable global routes TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Global routes TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Global routes TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Breland A, S Nasser, K Schlauch, M Nicolescu, F Harris (2008) Efficient Influenza A Virus Origin Detection. Journal of Electronics and Computer Science, 10;1-12

Motivation Delineating real disease networks is very useful -examine with other spatial data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Spatial data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Spatial data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT VEGETATION

Motivation Spatial data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT POPULATION

Motivation Spatial data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT CLIMATE CHANGE

Motivation Major Questions Data Genome Comparison Method TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Outline

Major questions Location and degree of host jumping Underlying structure (small world, power law..)‏ Subtype independence Re-assortment Geographic routes TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Major Questions Data Genome Comparison Method TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Outline

Data TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Data ≈ 4000 sequences Global regions (i.e. China, U.S., Africa, India...)‏ All subtypes (i.e. H5N1, H1N1,..)‏ All hosts species (Domestic Avian, Wild Avian, etc..)‏ TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Data ≈ 374 per year TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Data Multiple host types TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Data Multiple sub types TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Motivation Major Questions Data Genome Comparison Method TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Outline

Genome Comparisons Similarity matrix, N sequences: N(N-1)/2 comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT N N N N...21

Romanova,J (2006) The fight against new types of influenza virus. Biotechnology J, 1:

Genome Comparisons 8 segments TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT - 1 N N N N N N N N N N N N N N N N...21 HA ≈ 1750bp NS ≈ 900bp M ≈ 1000bpNA ≈ 1300bpNP ≈ 1500bp PA ≈ 2100bpPB1 ≈ 2200bpPB2 ≈ 2300bp

Genome Comparisons 8 segments TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Alignment, O(n 2 ), n = max sequence length.....AAAACTTGAACC GGACTTGACCT.....

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA AAGAACCTTTATGACAAGGTTCGACTACA GCTTAGGGATAATGCAAAGGAGCTGGT Alignment-free k-mers, O(n)‏ ∑ = {A,C,G,T/U} 4 k possible k-mers, k≥0 TT TG... AG AC AA frequencyk-word

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA Feature Frequency Profiles (FFP)‏ C k = F k = = Sims GE, Jun SR, Wu GA, Kim SH (2009) Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proc Natl Acad Sci U S A., 106(8):

Genome Comparisons Jensen-Shannon Divergence (JS) compare(s 1,s 2 ) TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA P k = FFP(s 1 ), Q k = FFP(s 2 ), M k = (P k + M k )/2 JS(P k,M k ) = 1/2KL(P k,M k ) + 1/2KL(Q k,M k )‏ KL =

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA k=?

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA k=? k s.t. N(k) ≥ N(k+1)‏ k ≈ 4

Genome Comparisons TTGTGGATTCTTGATCGTCTTTTCTTCAAATGTAT TTATCGTCGCCTTAAATACGGA Actual & Predicted times

Questions/Comments? Thanks