1 ATM and MPLS ECS 152A. 2 Virtualization of networks Virtualization of resources: a powerful abstraction in systems engineering: r computing examples:

Slides:



Advertisements
Similar presentations
11-1 Last time □ Distance vector link cost changes ♦ Count-to-infinity, poisoned reverse □ Hierarchical routing ♦ Autonomous Systems ♦ Inter-AS, Intra-AS.
Advertisements

ATM Asynchronous Transfer Mode. ATM Networks Use optical fibre similar to that used for FDDI networks ATM runs on network hardware called SONET ATM cells.
WHAT’S ATM? ATM is Asynchronous Transfer Mode.
5: DataLink Layer5-1 Asynchronous Transfer Mode: ATM r 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service.
Chapter 5 Link Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 23.
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
5: DataLink Layer5-1 Cerf & Kahn’s Internetwork Architecture What is virtualized? r two layers of addressing: internetwork and local network r new layer.
5: DataLink Layer ATM. Trouble compiling the project code on Ubuntu: r If you get the error: h_addr not a member of struct hostent In the file.
Link Layer & Physical Layer CPE 400 / 600 Computer Communication Networks Lecture 24.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 13.
Network Layer4-1 Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005.
Protocols and the TCP/IP Suite Asynchronous Transfer Mode (ATM)
EE 4272Spring, 2003 Chapter 11. ATM and Frame Relay Overview of ATM Protocol Architecture ATM Logical Connections ATM Cells ATM Service Categories ATM.
Computer Networks ATM and MPLS Professor Hui Zhang
CS 5565 Network Architecture and Protocols Godmar Back Lecture 25.
Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
Introduction 1 Lecture 26 Link Layer (PPP, Virtualization) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Introduction to Network Layer. Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using bridges? –No!
Link Layer 5.1 Introduction and services
ATM and Multi-Protocol Label Switching (MPLS)
Asynchronous Transfer Mode: ATM r 1980s/1990’s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture.
5: DataLink Layer5-1 VLANs. 5: DataLink Layer5-2 Introduction r Need to have different broadcast domains on the same physical network r E.g. Consider.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 18 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Virtual Circuit Network. Network Layer 2 Network layer r transport segment from sending to receiving host r network layer protocols in every host, router.
Introduction 1-1 EKT355/4 ADVANCED COMPUTER NETWORK MISS HASNAH AHMAD School of Computer & Communication Engineering.
CHAPTER #6  Introducti on to ATM. Contents  Introduction  ATM Cells  ATM Architecture  ATM Connections  Addressing and Signaling  IP over ATM.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
ATM r ATM (Asynchronous Transfer Mode) is the switching and transport technology of the B-ISDN (Broadband ISDN) architecture (1980) r Goals: high speed.
5: Link Layer Part Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
Chapter 14 Connection-Oriented Networking and ATM
5: Link Layer and Local Area Networks5d-1 ATM r ATM (Asynchronous Transfer Mode) is the switching and transport technology of the B-ISDN (Broadband ISDN)
ATM Technologies. Asynchronous Transfer Mode (ATM) Designed by phone companies Single technology meant to handle –Voice –Video –Data Intended as LAN or.
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 Point to Point Data Link Control r one sender, one receiver, one link: easier than broadcast link: m no Media Access Control m no.
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
Forwarding.
Chapter 5 Link Layer and LAN Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of.
Virtual-Circuit Switching: ATM (Asynchronous Transmission Mode) and MPLS (Multiprotocol Label Switching)
Department of Computer and IT Engineering University of Kurdistan
5: DataLink Layer5-1 Virtualization of networks Virtualization of resources: powerful abstraction in systems engineering: r computing examples: virtual.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723
Data Communication and Networks
Asynchronous Transfer Mode (ATM) Architecture and Operation
Virtualization of networks
Chapter 5 Link Layer and LANs
CS 5565 Network Architecture and Protocols
EE 122: Lecture 19 (Asynchronous Transfer Mode - ATM)
Network Layer Goals: Overview:
Part 5: Link Layer Technologies
CS4470 Computer Networking Protocols
Chapter 4-1 Network layer
Network Layer I have learned from life no matter how far you go
Presentation transcript:

1 ATM and MPLS ECS 152A

2 Virtualization of networks Virtualization of resources: a powerful abstraction in systems engineering: r computing examples: virtual memory, virtual devices m Virtual machines: e.g., java m IBM VM os from 1960’s/70’s r layering of abstractions: don’t sweat the details of the lower layer, only deal with lower layers abstractly

3 The Internet: virtualizing networks 1974: multiple unconnected nets m ARPAnet m data-over-cable networks m packet satellite network (Aloha) m packet radio network … differing in: m addressing conventions m packet formats m error recovery m routing ARPAnet satellite net "A Protocol for Packet Network Intercommunication", V. Cerf, R. Kahn, IEEE Transactions on Communications, May, 1974, pp

4 The Internet: virtualizing networks ARPAnet satellite net gateway Internetwork layer (IP): r addressing: internetwork appears as a single, uniform entity, despite underlying local network heterogeneity r network of networks Gateway: r “embed internetwork packets in local packet format or extract them” r route (at internetwork level) to next gateway

5 Cerf & Kahn’s Internetwork Architecture What is virtualized? r two layers of addressing: internetwork and local network r new layer (IP) makes everything homogeneous at internetwork layer r underlying local network technology m cable m satellite m 56K telephone modem m today: ATM, MPLS … “invisible” at internetwork layer. Looks like a link layer technology to IP!

6 ATM and MPLS r ATM, MPLS separate networks in their own right m different service models, addressing, routing from Internet r viewed by Internet as logical link connecting IP routers m just like dialup link is really part of separate network (telephone network) r ATM, MPSL: packet-switched, virtual circuit networks

7 Virtual circuits r call setup, teardown for each call before data can flow r each packet carries VC identifier (not destination host address) r every router on source-dest path maintains “state” for each passing connection r link, router resources (bandwidth, buffers) may be allocated to VC “source-to-dest path behaves much like telephone circuit” m performance-wise m network actions along source-to-dest path

8 VC implementation A VC consists of: 1. Path from source to destination 2. VC numbers, one number for each link along path 3. Entries in forwarding tables in routers along path r Packet belonging to VC carries a VC number. r VC number must be changed on each link. m New VC number comes from forwarding table

9 Forwarding table VC number interface number Incoming interface Incoming VC # Outgoing interface Outgoing VC # … … Forwarding table in northwest router: Routers maintain connection state information!

10 Virtual circuits: signaling protocols r used to setup, maintain teardown VC r used in ATM, frame-relay, X.25 r not used in today’s Internet application transport network data link physical application transport network data link physical 1. Initiate call 2. incoming call 3. Accept call 4. Call connected 5. Data flow begins 6. Receive data

11 Asynchronous Transfer Mode: ATM r 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture r Goal: integrated, end-end transport of carry voice, video, data m meeting timing/QoS requirements of voice, video (versus Internet best-effort model) m “next generation” telephony: technical roots in telephone world m packet-switching (fixed length packets, called “cells”) using virtual circuits

12 ATM architecture r ATM adaptation layer: only at edge of ATM network m data segmentation/reassembly m roughly analogous to Internet transport layer r ATM layer: “network” layer m cell switching, routing r physical layer

13 ATM: network or link layer? Vision: end-to-end transport: “ATM from desktop to desktop” m ATM is a network technology Reality: used to connect IP backbone routers m “IP over ATM” m ATM as switched link layer, connecting IP routers ATM network IP network

14 ATM Adaptation Layer (AAL) r ATM Adaptation Layer (AAL): “adapts” upper layers (IP or native ATM applications) to ATM layer below r AAL present only in end systems, not in switches r AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells m analogy: TCP segment in many IP packets

15 ATM Adaptation Layer (AAL) [more] Different versions of AAL layers, depending on ATM service class: r AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation r AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video r AAL5: for data (eg, IP datagrams) AAL PDU ATM cell User data

16 ATM Layer Service: transport cells across ATM network r analogous to IP network layer r very different services than IP network layer Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Bandwidth none constant rate guaranteed rate guaranteed minimum none Loss no yes no Order no yes Timing no yes no Congestion feedback no (inferred via loss) no congestion no congestion yes no Guarantees ?

17 ATM Layer: Virtual Circuits r VC transport: cells carried on VC from source to dest m call setup, teardown for each call before data can flow m each packet carries VC identifier (not destination ID) m every switch on source-dest path maintain “state” for each passing connection m link,switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf. r Permanent VCs (PVCs) m long lasting connections m typically: “permanent” route between to IP routers r Switched VCs (SVC): m dynamically set up on per-call basis

18 ATM VCs r Advantages of ATM VC approach: m QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter) r Drawbacks of ATM VC approach: m Inefficient support of datagram traffic m one PVC between each source/dest pair) does not scale (N*(N-1) connections needed) m SVC introduces call setup latency, processing overhead for short lived connections

19 ATM Layer: ATM cell r 5-byte ATM cell header r 48-byte payload m Why?: small payload -> short cell-creation delay for digitized voice m halfway between 32 and 64 (compromise!) Cell header Cell format

20 ATM cell header r VCI: virtual channel ID m will change from link to link thru net r PT: Payload type (e.g. RM cell versus data cell) r CLP: Cell Loss Priority bit m CLP = 1 implies low priority cell, can be discarded if congestion r HEC: Header Error Checksum m cyclic redundancy check

21 ATM Physical Layer (more) Two pieces (sublayers) of physical layer: r Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below r Physical Medium Dependent: depends on physical medium being used TCS Functions: m Header checksum generation: 8 bits CRC m Cell delineation m With “unstructured” PMD sublayer, transmission of idle cells when no data cells to send

22 ATM Physical Layer Physical Medium Dependent (PMD) sublayer r SONET/SDH: transmission frame structure (like a container carrying bits); m bit synchronization; m bandwidth partitions (TDM); m several speeds: OC3 = Mbps; OC12 = Mbps; OC48 = 2.45 Gbps, OC192 = 9.6 Gbps r TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps r unstructured: just cells (busy/idle)

23 IP-Over-ATM Classic IP only r 3 “networks” (e.g., LAN segments) r MAC (802.3) and IP addresses IP over ATM r replace “network” (e.g., LAN segment) with ATM network r ATM addresses, IP addresses ATM network Ethernet LANs Ethernet LANs

24 IP-Over-ATM AAL ATM phy Eth IP ATM phy ATM phy app transport IP AAL ATM phy app transport IP Eth phy

25 Datagram Journey in IP-over-ATM Network r at Source Host: m IP layer maps between IP, ATM dest address (using ARP) m passes datagram to AAL5 m AAL5 encapsulates data, segments cells, passes to ATM layer r ATM network: moves cell along VC to destination r at Destination Host: m AAL5 reassembles cells into original datagram m if CRC OK, datagram is passed to IP

26 IP-Over-ATM Issues: r IP datagrams into ATM AAL5 PDUs r from IP addresses to ATM addresses m just like IP addresses to MAC addresses! ATM network Ethernet LANs

27 Multiprotocol label switching (MPLS) r initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding m borrowing ideas from Virtual Circuit (VC) approach m but IP datagram still keeps IP address! PPP or Ethernet header IP header remainder of link-layer frame MPLS header label Exp S TTL

28 MPLS capable routers r a.k.a. label-switched router r forwards packets to outgoing interface based only on label value (don’t inspect IP address) m MPLS forwarding table distinct from IP forwarding tables r signaling protocol needed to set up forwarding m RSVP-TE m forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !! m use MPLS for traffic engineering r must co-exist with IP-only routers

29 R1 R2 D R3 R4 R A R6 in out out label label dest interface 6 - A 0 in out out label label dest interface 10 6 A D 0 in out out label label dest interface 10 A 0 12 D 0 1 in out out label label dest interface 8 6 A A 1 MPLS forwarding tables

30 Chapter 5: Summary r principles behind data link layer services: m error detection, correction m sharing a broadcast channel: multiple access m link layer addressing r instantiation and implementation of various link layer technologies m Ethernet m switched LANS m PPP m virtualized networks as a link layer: ATM, MPLS