Dark Energy Perturbations 李明哲 南京大学物理学院 2011.10.13 中国科技大学交叉学科理论研究中心 合肥.

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Non-Gaussianity of superhorizon curvature perturbations beyond δN-formalism Resceu, University of Tokyo Yuichi Takamizu Collaborator: Shinji Mukohyama.
Test CPT with CMB Mingzhe Li Department of Physics, Nanjing University May 10, 2011 IHEP Beijing.
Testing CPT with CMB 李明哲 University of Bielefeld 2008 年 4 月 28 日.
Cosmological CPT Violation, Baryo/leptogenesis and CMB Polarization Mingzhe Li Nanjing University.
Dark energy and its connections to neutrino, baryo/leptogenesis and dark matter Xinmin Zhang Institute of High Energy Physics Beijing Outline of the talk.
Recent progress on the study of Dark Energy Xinmin Zhang Institute of high energy physics 1) Brief review on the models of dark energy, especially on Quintom.
Yi-Peng Wu Department of Physics, National Tsing Hua University May Chongquing 2012 Cross-Strait Meeting on Particle Physics and Cosmology Collaborate.
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
CMB lensing and cosmic acceleration Viviana Acquaviva SISSA, Trieste.
Quintessence and the Accelerating Universe
An Introduction to Inflation and Bouncing Cosmology Taotao Qiu Chung Yuan Christian University
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Quintessence from time evolution of fundamental mass scale.
Dynamical Dark Energy and Its Coupling to Matter Kin-Wang Ng ( 吳建宏 ) ASIoP ( 中央研究院物理所 ) & ASIAA ( 中央研究院天文所 ), Taipei NTHU Oct 4, 2007 Thanks to D.-S. Lee(
Cosmic Microwave Radiation Anisotropies in brane worlds K. Koyama astro-ph/ K. Koyama PRD (2002) Kazuya Koyama Tokyo University.
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
CMB as a physics laboratory
朴 云 松 朴 云 松 中国科学院研究生院 中国科学院研究生院 How to Build an Alternative to Inflation.
暗能量和宇宙学 CPT 破坏 李明哲 南京大学物理系 粒子 - 核 - 宇宙学联合研究中心. Outline 1, Brief review on dark energy models, cosmological constant or dynamical dark energy, current.
Voids of dark energy Irit Maor Case Western Reserve University With Sourish Dutta PRD 75, gr-qc/ Irit Maor Case Western Reserve University With.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Quintessence from time evolution of fundamental mass scale.
Non-Gaussianities of Single Field Inflation with Non-minimal Coupling Taotao Qiu Based on paper: arXiv: [Hep-th] (collaborated with.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
Cosmological Post-Newtonian Approximation with Dark Energy J. Hwang and H. Noh
Self – accelerating universe from nonlinear massive gravity Chunshan Lin Kavli
1 Circular Polarization of Gravitational Waves in String Cosmology MIAMI, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Horava-Lifshitz 重力理論とはなにか? 早田次郎 京都大学理学研究科 大阪市立大学セミナー T.Takahashi & J.Soda, arXiv: [hep-th], to appear in Phys.Rev.Lett. Ref. Chiral Primordial.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
The anisotropic inflation and its imprints on the CMB Kyoto University Masaaki WATANABE Ref: MW, Sugumi Kanno, and Jiro Soda [1] 2009, arXiv:
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
Nonlinear perturbations for cosmological scalar fields Filippo Vernizzi ICTP, Trieste Finnish-Japanese Workshop on Particle Cosmology Helsinki, March 09,
Quintom Cosmology Tao-Tao Qiu & Yi-Fu Cai, IHEP (邱涛涛、蔡一夫, 中科院高能所) ( “ 精灵 ” 宇宙学)
27 th May 2009, School of Astrophysics, Bertinoro Daniela Paoletti University and INFN of Ferrara INAF/IASF-Bologna Work in collaboration with Fabio Finelli.
Æthereal Gravity: Observational Constraints on Einstein- Æther Theory Brendan Foster University of Maryland.
Dark Energy, Cosmological CPT Violation and Baryo/Leptogenesis Xinmin Zhang Institute of high energy physics 1) Brief review on the dark energy study;
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
Higher Derivative Dark Energy Mingzhe Li Department of Physics, Nanjing University May 22, 2012 IHEP Beijing.
Recent Progress on Dark Energy Study Xinmin Zhang IHEP
Inflationary Theory of Primordial Cosmological Perturbation Project for General Relativity (Instructor: Prof.Whiting) Sohyun Park.
Theoretical Aspects of Dark Energy Models Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences CCAST, July 4, 2005.
Interacting Dark Energy Xinmin Zhang Institute of High Energy Physics Beijing Outline of the talk I. Current constraints on Dark Energy a. Constraints.
1 Circular Polarization of Gravitational Waves in String Cosmology KITPC, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Three theoretical issues in physical cosmology I. Nonlinear clustering II. Dark matter III. Dark energy J. Hwang (KNU), H. Noh (KASI)
Vector modes, vorticity and magnetic fields Kobayashi, RM, Shiromizu, Takahashi: PRD, astro-ph/ Caprini, Crittenden, Hollenstein, RM: PRD, arXiv:
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Determining cosmological parameters with the latest observational data Hong Li TPCSF/IHEP
宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 南昌 中国高能物理学会.
Determination of cosmological parameters Gong-Bo Zhao, Jun-Qing Xia, Bo Feng, Hong Li Xinmin Zhang IHEP, Beijing
Cosmology : a short introduction Mathieu Langer Institut d’Astrophysique Spatiale Université Paris-Sud XI Orsay, France Egyptian School on High Energy.
On the Lagrangian theory of cosmological density perturbations Isolo di San Servolo, Venice Aug 30, 2007 V. Strokov Astro Space Center of the P.N. Lebedev.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Parameterized post-Friedmann framework for interacting dark energy
Observational Constraints on the Running Vacuum Model
Finsler引力研究现状 重庆大学 李昕 2016年8月 合肥.
Interacting Dark Energy
Inflation with a Gauss-Bonnet coupling
Quantum Spacetime and Cosmic Inflation
Shintaro Nakamura (Tokyo University of Science)
Probing the Dark Sector
暴涨模型及观测检验 郭宗宽 中科院理论物理所 中国科技大学交叉学科理论研究中心 2011年6月30日.
Nonlinear cosmological perturbations
李明哲 南京大学物理系 粒子-核-宇宙学联合研究中心
Presentation transcript:

Dark Energy Perturbations 李明哲 南京大学物理学院 中国科技大学交叉学科理论研究中心 合肥

Outline Importance of cosmological perturbations Dark energy models Dark energy perturbations Dark energy coupling to CMB photons I Dark energy coupling to CMB photons II Conclusions

Importance of cosmological perturbations

Inflation quantum fluctuation Primordial perturbation

1965 COBE WMAP CMB anisotropy

Tests of perturbation theory CMB Angular Power Spectrum

Matter Power Spectrum

Dark Energy (DE)

Accelerating universe Negative pressure 1, Cosmological Constant (Einstein 1917) No perturbation

Cosmological constant problem Observation Zero point energy density

2, Dynamical dark energy I, quintessence Peccei, Sola, Wetterich, 1987 Wetterich, 1988 Peebles, Ratra, 1988 Zlatev, Wang, Steinhardt, 1998 II, phantom Caldwell, 1999

III, k-essence Amendariz-Picon, Mukhanov, Steinhardt, 2000 Quintessence, phantom are special cases of k-essence W cannot cross -1 IV, quintom w crosses -1 Feng, Wang, Zhang, 2004 ML, Feng, Zhang, 2005 Cai, ML, Lu, Piao, Qiu, Zhang, 2007

W a crucial parameter to distinguish different models Data fitting, model independent, parameterization DE perturbation, only vanished when w=-1 (cosmological constant) Naively switch off DE perturbation is not consistent Using observational data to search for DE models

Without DE perturbation With DE perturbation Weller, Lewies, 2003 Constant w and sound speed

FRW background Metric perturbation Equations of perturbations Conformal Newtonian Gauge Dark Energy Perturbations

All matter including DE contribute to the metric perturbation

: sound speed in the comoving frame Adiabatic sound speed Single fluid Quintessence, phantom K-essence

Equations of dark energy perturbation The problem of dark energy perturbations Singular when w_e crosses -1 No-Go Theorem J.Xia, Y.Cai, T.Qiu, G.Zhao, X.Zhang (2008) Quintom dark energy B.Feng, X.Wang, X.Zhang (2005) More degrees of freedom

Parameterization, e.g., Multi fluids or multi fields need more equations not applicable Not convenient in data analysis Method without new parameters Zhao, Xia, ML, Feng, Zhang, 2005 Quintessence like Phantom like

Fitting result with and without DE perturbation

Matching condition ML, Cai, Li, Brandenberger, Zhang, 2010 Space-like surface The induced 3-metric on and its extrinsic curvature be continuous on both sides go to the “tilde coordinate system”

Gauge transformation

Matching condition 3-metric extrinsic curvature

In arbitrary gauge In conformal Newtonian gauge

Gauge-invariant variables Initial conditions: adiabatic & isocurvature

Super-horizon scales

Adiabatic perturbation Isocurvature perturbation Mixture of adiabatic and isocurvature modes

Adiabatic perturbation

Pure dark matter isocurvature perturbation Ruled out by experiments

DE isocurvature perturbation Liu, ML, Zhang, 2010

The action integral is gauge invariant. Geometric Optics Approximation Dark energy coupling to photons I: Chern-Simons and CPT violation

Stokes parameters I→ intensity Q&U→ linear polarization V→ circular polarization The polarization angle: Spin 2

Six spectra

CPT violation induced the rotation of the polarization direction Rotation angle characterizes the CPT-violating effect!

Background homogeneous

Without CPT violation, the correlations of TB and EB vanish Consider the rotation angle as a free parameter

CMBPol can detect Simulation result : Current Status

WMAP3+BOOMERanG03

Perturbation, spatial dependent rotation angle ML, Zhang, 2008

A new method to produce B-mode polarization CPT violation Weak gravitational lensingW.Hu 2000

Dark energy coupling to photons II: varying fine structure constant

Wang, ML, 2009 r: recombination

Linear fluctuation, new long range force

Weak gravitational lensing

Conclusions Naively turn off dark energy perturbation is not consistent. We need new method to treat the dark energy perturbation in the whole parameter space. DE isocurvature perturbation is not strongly constrained by current data, but it is expected to be limited more tightly by CMB-LSS cross correlation. In models of dark energy interacting with photons, the perturbation of dark energy has interesting implications.

Thanks!