CHAPTER 9: MECHANICAL FAILURE

Slides:



Advertisements
Similar presentations
FRACTURE Brittle Fracture Ductile to Brittle transition
Advertisements

CHAPTER 4: FRACTURE The separation or fragmentation of a solid body into two or more parts, under the action of stresses, is called fracture. Fracture.
3 – Fracture of Materials
ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
ENGR-45_Lec-19_Failure-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
Fracture Mechanics Overview & Basics
Chapter 9 Failure of Materials
Chapter 8: Mechanical Failure
Week 5 Fracture, Toughness, Fatigue, and Creep
IMPACT TEST EXPERIMENT # 7 Instructor: M.Yaqub. IMPACT LOAD  Shock load or sudden load is referred as impact load.  In order to select a material to.
Engineering materials lecture #14
MECHANISMS OF FAILURE M.N. Tamin, UTM SME 4133 Failure of Engineering Components and Structures MODULE 4 MECHANISMS OF FAILURE SKMM 4133 Failure of Engineering.
ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How.
ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How.
ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How.
Jiangyu Li, University of Washington Lecture 18 Impact Test and Stress Concentration Mechanical Behavior of Materials Section 4.8, 8.1, 8.2 Jiangyu Li.
Fracture of Divertor Structures Jake Blanchard ARIES Meeting April 2011.
Lab 6B -Fracture Toughness and Fracture Toughness-limited Design Big bang for the buck!
MSE 527 Lab Mechanical Behavior of Materials Fall 2011.
Mechanical Properties
ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how.
CHAPTER 6: MECHANICAL PROPERTIES
ME260 Mechanical Engineering Design II Instructor notes.
Materials Engineering – Day 3
Chapter 8: Mechanical Failure
CHAPTER 8: MECHANICAL FAILURE
Chapter ISSUES TO ADDRESS... How do cracks that lead to failure form? How is fracture resistance quantified? How do the fracture resistances of the.
Fracture This is BIG topic Underlines all of Failure Analysis – One of the big fields that metallurgists/ material scientists get involved in There are.
Fatigue Fatigue is the lowering of strength or the failure of a material due to repetitive stress, which may be above or below the yield strength. Many.
Week 4 Fracture, Toughness, Fatigue, and Creep
Chapter 8: Failure of Metals
Fracture, Toughness, Fatigue, and Creep
Registered Electrical & Mechanical Engineer
Fracture mechanisms Ductile fracture Brittle fracture
Exam 2 Grade Distribution. Stress-strain behavior (Room T): Ideal vs Real Materials TS
Chapter 8-6 Stress-strain behavior (Room T): TS
Section 6.10 Fracture Mechanics
Lecture 14 Fracture and Impact ME 330 Engineering Materials Fracture Process Ductile Fracture Brittle Fracture Impact Testing Stress Concentration Factor,
ENGR-45_Lec-18_DisLoc-Strength-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
Fatigue 7-1. Fatigue of Metals Metals often fail at much lower stress at cyclic loading compared to static loading. Crack nucleates at region of stress.
Chapter 8-17 Fatigue = failure under cyclic stress. Stress varies with time. --key parameters are S and  m Key points: Fatigue... --can cause part failure,
Week 4 Fracture, Toughness, Fatigue, and Creep
ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How.
Chapter 8: Mechanical Failure
Fatigue • Fatigue = failure under cyclic stress.
Chapter 9: Mechanical Failure
Chapter 8: Mechanical Failure
MECHANICAL FAILURE Need to understand mechanisms of various fracture modes Fracture, fatigue & creep Will study Simple fracture (brittle & ductile) Fundamentals.
Chapter 10: Mechanical Failure
Materials Engineering – Day 3
MSE 527 Lab Mechanical Behavior of Materials
Mechanical Failure ISSUES TO ADDRESS...
Chapter 8: Mechanical Failure & Failure Analysis
FATIGUE • Fatigue = failure under cyclic stress.
MODERATELY DUCTILE FAILURE
Materials Science and Manufacturing IENG 263
FRACTURE and TOUGHNESS DESIGN
IDEAL VS REAL MATERIALS
MODERATELY DUCTILE FAILURE
FATIGUE • Fatigue = failure under cyclic stress.
Chapter 9: Mechanical Failure
Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
1/18/2019 6:28 AM C h a p t e r 8 Failure Dr. Mohammad Abuhaiba, PE.
Mechanical Properties: 2
CHAPTER 6: MECHANICAL PROPERTIES
Introduction to Materials Science and Engineering
Behavior of Materials in Service
Introduction to Materials Science and Engineering
Mechanical Failure(파괴)
Presentation transcript:

CHAPTER 9: MECHANICAL FAILURE ISSUES TO ADDRESS... • How do flaws in a material initiate failure? • How is fracture resistance quantified; how do different material classes compare? • How do we estimate the stress to fracture? • How do loading rate, loading history, and temperature affect the failure stress? Ship-cyclic loading from waves. Computer chip-cyclic thermal loading. Hip implant-cyclic loading from walking. 1

EX: FAILURE OF A PIPE • Ductile failure: • Brittle failure: --one piece --large deformation • Brittle failure: --many pieces --small deformation 3

MODERATELY DUCTILE FAILURE • Evolution to failure: 50 mm • Resulting fracture surfaces (steel) 50 mm 100 mm particles serve as void nucleation sites. 4

BRITTLE FRACTURE SURFACES • Intergranular (between grains) • Intragranular (within grains) 304 S. Steel (metal) 316 S. Steel (metal) 160mm 4 mm Polypropylene (polymer) Al Oxide (ceramic) 3mm 1 mm 5

IDEAL VS REAL MATERIALS • Stress-strain behavior (Room T): TS << TS engineering materials perfect • DaVinci (500 yrs ago!) observed... --the longer the wire, the smaller the load to fail it. • Reasons: --flaws cause premature failure. --Larger samples are more flawed! 6

FLAWS ARE STRESS CONCENTRATORS! • Elliptical hole in a plate: • Stress distrib. in front of a hole: • Stress conc. factor: • Large Kt promotes failure: 7

ENGINEERING FRACTURE DESIGN • Avoid sharp corners! 8

WHEN DOES A CRACK PROPAGATE? • rt at a crack tip is very small! • Result: crack tip stress is very large. • Crack propagates when: the tip stress is large enough to make: K ≥ Kc 9

GEOMETRY, LOAD, & MATERIAL • Condition for crack propagation: K ≥ Kc Stress Intensity Factor: --Depends on load & geometry. Fracture Toughness: --Depends on the material, temperature, environment, & rate of loading. • Values of K for some standard loads & geometries: 10

FRACTURE TOUGHNESS increasing Based on data in Table B5, Callister 6e. Composite reinforcement geometry is: f = fibers; sf = short fibers; w = whiskers; p = particles. Addition data as noted (vol. fraction of reinforcement): 1. (55vol%) ASM Handbook, Vol. 21, ASM Int., Materials Park, OH (2001) p. 606. 2. (55 vol%) Courtesy J. Cornie, MMC, Inc., Waltham, MA. 3. (30 vol%) P.F. Becher et al., Fracture Mechanics of Ceramics, Vol. 7, Plenum Press (1986). pp. 61-73. 4. Courtesy CoorsTek, Golden, CO. 5. (30 vol%) S.T. Buljan et al., "Development of Ceramic Matrix Composites for Application in Technology for Advanced Engines Program", ORNL/Sub/85-22011/2, ORNL, 1992. 6. (20vol%) F.D. Gace et al., Ceram. Eng. Sci. Proc., Vol. 7 (1986) pp. 978-82. 11

DESIGN AGAINST CRACK GROWTH • Crack growth condition: K ≥ Kc • Largest, most stressed cracks grow first! --Result 1: Max flaw size dictates design stress. --Result 2: Design stress dictates max. flaw size. 12

DESIGN EX: AIRCRAFT WING • Material has Kc = 26 MPa-m0.5 • Two designs to consider... Design A --largest flaw is 9 mm --failure stress = 112 MPa Design B --use same material --largest flaw is 4 mm --failure stress = ? • Use... • Key point: Y and Kc are the same in both designs. --Result: 112 MPa 9 mm 4 mm Answer: • Reducing flaw size pays off! 13

LOADING RATE • Increased loading rate... • Why? An increased rate --increases sy and TS --decreases %EL • Why? An increased rate gives less time for disl. to move past obstacles. • Impact loading: --severe testing case --more brittle --smaller toughness 14

TEMPERATURE • Increasing temperature... --increases %EL and Kc • Ductile-to-brittle transition temperature (DBTT)... 15

DESIGN STRATEGY: STAY ABOVE THE DBTT! • Pre-WWII: The Titanic • WWII: Liberty ships • Problem: Used a type of steel with a DBTT ~ Room temp. 16

SUMMARY • Engineering materials don't reach theoretical strength. • Flaws produce stress concentrations that cause premature failure. • Sharp corners produce large stress concentrations and premature failure. • Failure type depends on T and stress: -for noncyclic s and T < 0.4Tm, failure stress decreases with: increased maximum flaw size, decreased T, increased rate of loading. -for cyclic s: cycles to fail decreases as Ds increases. -for higher T (T > 0.4Tm): time to fail decreases as s or T increases. 26