A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

Zi-Wei Lin (ECU) 28th WWND, Puerto Rico April 10, Update of Initial Conditions in A Multiple Phase Transport (AMPT) Model Zi-Wei Lin Department.
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
ISMD’05, Kromeriz, Aug 09  15, Heavy  Flavor (c,b) Collectivity – Light  Flavor (u,d,s) Thermalization at RHIC Kai Schweda, University of Heidelberg.
Diffusion and local deconfinement in relativistic systems Georg Wolschin Universität Heidelberg, Theor. Physics Georg Wolschin.
Quantum Opacity, RHIC HBT Puzzle, and the Chiral Phase Transition RHIC Physics, HBT and RHIC HBT Puzzle Quantum mech. treatment of optical potential, U.
1 Heavy Ion Collisions at LHC in a Multiphase Transport Model  A multi-phase transport (AMPT) model  Rapidity and transverse momentum distributions 
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
R. L. Thews Hard Probes 2004 Lisbon QUARKONIUM FORMATION IN STATISTICAL AND KINETIC MODELS R. L. THEWS UNIVERSITY OF ARIZONA HARD PROBES 2004 LISBON November.
1 Systematic studies of freeze-out source size in relativistic heavy-ion collisions by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory.
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
ISMD, Berkeley, Aug 4  9, 2007 Kai Schweda 1 Bulk Properties of QCD – matter at Highest Colider Energies Kai Schweda, University of Heidelberg / GSI Darmstadt.
K/π and p/π Fluctuations 25 th Winter Workshop on Nuclear Dynamics February 2, 2009 Gary Westfall Michigan State University For the STAR Collaboration.
Collision system dependence of 3-D Gaussian source size measured by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory 23 rd Winter Workshop.
1 Searching for the QGP at RHIC Che-Ming Ko Texas A&M University  Signatures of QGP  Quark coalescence Baryon/meson ratio Hadron elliptic flows and quark.
XXXIII International Symposium on Multiparticle Dynamics, September 7, 2003 Kraków, Poland Manuel Calderón de la Barca Sánchez STAR Collaboration Review.
Helen Caines Yale University SQM – L.A.– March 2006 Using strange hadron yields as probes of dense matter. Outline Can we use thermal models to describe.
1 Jozsó Zimányi (1931 – 2006). 2 Jozsó Zimányi I met Prof. Zimányi in India in Member, NA49 and PHENIX Collaborations Nuclear Equation of State.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
May, 20, 2010Exotics from Heavy Ion Collisions KE T and Quark Number Scaling of v 2 Maya Shimomura University of Tsukuba Collaborated with Yoshimasa Ikeda,
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
Lecture 10 : Statistical thermal model Hadron multiplicities and their correlations and fluctuations (event-by-event) are observables which can provide.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Helen Caines Yale University Soft Physics at the LHC - Catania - Sept Questions for the LHC resulting from RHIC Strangeness Outline Chemistry Yields.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
Peter Kolb, CIPANP03, May 22, 2003what we learn from hydro1 What did we learn, and what will we learn from Hydro CIPANP 2003 New York City, May 22, 2003.
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
JET Collaboration Meeting June 17-18, 2014, UC-Davis1/25 Flow and “Temperature” of the Parton Phase from AMPT Zi-Wei Lin Department of Physics East Carolina.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Analysis of the anomalous tail of pion production in Au+Au collisions as measured by the PHENIX experiment at RHIC M. Nagy 1, M. Csanád 1, T. Csörgő 2.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
Energy Dependence of Soft Hadron Production Christoph Blume2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar. 30 -
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Review of Structures in the Energy Dependence of Hadronic Observables Christoph BlumeInt. Workshop on Critical Point and Onset of Deconfinement Florence,
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
A. Ster1,2, T. Csörgő2 1 KFKI-RMKI, 2 KFKI-MFA, Hungary
Hydro + Cascade Model at RHIC
Outline First of all, there’s too much data!! BRAHMS PHOBOS PHENIX
Presentation transcript:

A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra and radii Buda-Lund hydro model Buda-Lund fits to final run-1 RHIC data Comparison of results and models Indication for a hot center

A. ISMD 2003, Cracow  We have strong interaction analogues of familiar phases  Nuclei behave like a liquid  Quark Gluon Plasma –“ Ionize” nucleons with heat –“Compress” them with density  New state of matter Phases of QCD Matter Z. Fodor and S.D. Katz: T c ~ 170 MeV even at finite baryon density. Cross over like transition. (hep-lat/ , )

A. ISMD 2003, Cracow Buda-Lund hydro model  Separation of the Core and the Halo  Core: hydrodynamic evolution  Halo: decay products of long-lived resonances - Analytic expressions for all the observables - 3d expansion, local thermal equilibrium, symmetry - Goes back to known hydro solutions in nonrel limit Principles for Buda-Lund hydro

A. ISMD 2003, Cracow Buda-Lund hydro model The general form of the emission function: Calculation of observables with core-halo correction: Assuming special shapes for the flux, temperature, chemical potential and flow:

A. ISMD 2003, Cracow Buda-Lund hydro model Invariant single particle spectrum: Invariant Buda-Lund correlation function: oscillating prefactor! Non-invariant Bertsch-Pratt parameterization: Non-Gaussian BL form -> Gaussian BP approximation:

A. ISMD 2003, Cracow R out /R side Ratios at 200 GeV <- Buda-Lund prediction Note also: R side /R L -> const (<=1) as m t >> T 0 is another a BL prediction T. Cs. & B. Lorstad, PRC54 (1996) 1390 NPA 590 (1995) 465 reflects symmetry of the flow !

A. ISMD 2003, Cracow Buda-Lund fits to NA22 h + p data N. M. Agababyan et al, EHS/NA22, PLB 422 (1998) 395 T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80

A. ISMD 2003, Cracow Buda-Lund fits to NA44 Pb+Pb data A. Ster, T. Cs, B. Lörstad, hep-ph/ Final data Absolute normalization, Boltzmann approx.,  ~ 1,  0 = 0 approx.

A. ISMD 2003, Cracow Buda-Lund fits to NA49 Pb+Pb data A. Ster, T. Cs, B. Lörstad, hep-ph/ Final data Absolute normalization, Boltzmann approx.,  ~ 1,  0 = 0 approx.

A. ISMD 2003, Cracow Buda-Lund fits to run-1 RHIC data Calculation program packages : Version 1.0: Calculation of IMD & Radii, linearized saddle-point equations (NA22,NA4,NA49, prel. RHIC run-1) Version 1.4: Calculation for dN/ added Version 2.0: Exact analytic calculation of space-time rapidity of the saddle point, 2nd order calculation in transverse position of saddle point All versions: Analytic expressions for all observables and simultaneous fits to all the observables

A. ISMD 2003, Cracow BudaLund fits to final run-1 RHIC data

A. ISMD 2003, Cracow BudaLund fits to final run-1 RHIC data

A. ISMD 2003, Cracow BudaLund Hubble fits run-1 RHIC data

A. ISMD 2003, Cracow BudaLund fits to final run-1 RHIC data V1.0 fits to STAR & PHENIX data at midrapidity V1.4 Rg fixed as data determine /Rg dependence only

A. ISMD 2003, Cracow Comparing RHIC Au+Au to SPS results A 3 effect, T 0 > T c = 170 MeV, T 0 (RHIC) > T 0 (SPS) Indication for quarks & hard EOS

A. ISMD 2003, Cracow Comparison of results of models Acceptable

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models ~ Acceptable

A. ISMD 2003, Cracow Comparison of results of models Acceptable

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models ~ Acceptable

A. ISMD 2003, Cracow Comparison of results of models

A. ISMD 2003, Cracow Comparison of results of models Models with acceptable results: nucl-th/ Buda-Lund / core-halo model. T.Csörgő. A. Ster, Heavy Ion Phys. 17 (2003) nucl-th/ Multiphase Trasport model (AMPT). Z. Lin, C. M. Ko, S. Pal. nucl-ex/ Blast wave model. F. Retiére for STAR. nucl-th/ Hadron cascade model. T. Humanic. nucl-th/ D hydro model. T. Hirano, & T.Tsuda. hep-ph/ Hadron model. W.Broniowski, A. Baran W. Florkowski. Not shown here but acceptable:

A. ISMD 2003, Cracow Comparision of expansion rates: RHIC and the Universe Universality of the Hubble expansion u = H r Hubble constant of the Universe: H 0 = 71 ± 7 km/sec/Mpc converted to SI units: H 0 = (2.3 ± 0.2)x sec -1 Hubble constant of Method a)H RHIC = /R G ~ (3.3 ± 0.6)x10 22 sec -1 Method b)H RHIC = 1/  0 ~ (4.9 ± 0.3)x10 22 sec -1 Ratio of expansion rates: H RHIC / H 0 ~ 2 x approx. the ratio of the ages of the objects, without correction for inflation...

A. ISMD 2003, Cracow CONCLUSION The analysis of RHIC Au+Au data from BRAHMS, PHOBOS, PHENIX and STAR show: succesful Buda-Lund hydro fits (also at h+p and Pb+Pb at SPS) indication for deconfinement at RHIC (T > T c = 170 MeV by 3  at RHIC, but not at SPS) evidence for a 3d Hubble flow at RHIC

A. ISMD 2003, Cracow CONCLUSION Buda-Lund: T 0 > T c at RHIC

A. ISMD 2003, Cracow NEXT TO DO Fits to : new NA49 data (with Kaon correlation), NA44 data, CERES data at SPS. new run-2 data at RHIC