E-ELT Instrumentation Project Office Adaptive Optics for the E-ELT status review of Phase A & B activities Norbert Hubin Adaptive Optics Department.

Slides:



Advertisements
Similar presentations
ESO, 27 Nov 09 SPHERE – the high contrast challenge Markus Kasper, ESO 1 1.
Advertisements

Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
E-ELT VLT HARMONI – the first light integral field spectrograph for the E-ELT Niranjan Thatte On behalf of the HARMONI consortium Florence - 29 June 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
Widening the Scope of Adaptive Optics Matthew Britton.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
A Short Presentation of Ongoing AO Work at Lund Observatory Mette Owner-Petersen Lund Observatory Workshop for “Forskarskolen i Rymdteknik” Gothenburg.
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
W. M. Keck Observatory’s Next Generation Adaptive Optics (NGAO) Facility Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max for NGAO Team:
What Requirements Drive NGAO Cost? Richard Dekany NGAO Team Meeting September 11-12, 2008.
TMT.AOS.PRE REL01 Ellerbroek, AO4ELT, Paris, June Brent Ellerbroek Thirty Meter Telescope Observatory Corporation Adaptive Optics for.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
T-REX OU4 HIRES The high resolution spectrograph for E-ELT E. Oliva, T-REX meeting, Sexten Pustertal (I)1.
 Johann Kolb, Norbert Hubin  Mark Downing, Olaf Iwert, Dietrich Baade Simulation results:  Richard Clare Detectors for LGS WF sensing on the E-ELT 1AO.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
MCAO Adaptive Optics Module Mechanical Design Eric James.
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
OWL Instrument Concept Studies Within the OWL Conceptual Design to be completed by ESO in 3Q 2005, ESO collaborates with external institutes in the study.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
GLAO simulations at ESO European Southern Observatory
AO4ELT - Paris Giant Magellan Telescope Project Science Drivers & AO Requirements Patrick McCarthy - GMT Director Phil Hinz & Michael Hart - GMT.
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
Toward the AO for the European ELT Norbert Hubin European Southern Observatory
1 Manal Chebbo, Alastair Basden, Richard Myers, Nazim Bharmal, Tim Morris, Thierry Fusco, Jean-Francois Sauvage Fast E2E simulation tools and calibration.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
Extremely Large Telescope and its AO systems
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
The VLT Adaptive Optics Facility
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
ASTR 3010 Lecture 18 Textbook N/A
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
Preparing for operations with the European Extremely Large Telescope Fernando Comerón.
Shack-Hartmann tomographic wavefront reconstruction using LGS: Analysis of spot elongation and fratricide effect Clélia Robert 1, Jean-Marc Conan 1, Damien.
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
Wide-field wavefront sensing in Solar Adaptive Optics - its modeling and its effects on reconstruction Clémentine Béchet, Michel Tallon, Iciar Montilla,
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Pre-focal wave front correction and field stabilization for the E-ELT
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Keck Precision Adaptive Optics Authors: Christopher Neyman 1, Richard Dekany 2, Mitchell Troy 3 and Peter Wizinowich 1. 1 W.M. Keck Observatory, 2 California.
On ESO LGS activities Domenico Bonaccini Calia, Yan Feng, Wolfgang Hackenberg, Ronald Holzlöhner, Luke Taylor Laser Guide Star group European Southern.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Page 1 Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016.
Observing brown dwarfs in the E-ELT era
Pyramid sensors for AO and co-phasing
Presentation transcript:

E-ELT Instrumentation Project Office Adaptive Optics for the E-ELT status review of Phase A & B activities Norbert Hubin Adaptive Optics Department

E-ELT Instrumentation Project Office The Adaptive E-ELT 2 Phase “B” Design Study launched end years study Why? Increased collecting area  Fainter sources Increased diameter  Increased spatial resolution (with AO) Baseline Design 5 mirrors design 42 meters diameter cost 1000 M€

E-ELT Instrumentation Project Office Adaptive Optics Zoo GLAO-LGSLTAO: ATLASMCAO:MAORYMOAO:EAGLE 6-8 LGSs in Ø 7.2’ Few” IFU SCAO & XAO: EPICSGLAO-NGS

E-ELT Instrumentation Project Office E-ELT AO Modes Studied  #1: Seeing-limited;1’: Improved seeing  #2a: Luminosity-limited  #2b: Diffraction-limited 2b LTAO MCAO S H  30% 2b2b XAO S H  80% 1’ Multi-LGS GLAO 1 internal AO NGS 2a MOAO MCAO C H  35% 0”.1 px 0”.8 s 0 25 m L 0 H-band 240 mas H-band 800 mas 400 mas H-band 8/100 mas Combined Telescope – AO Systems – Instrument capability

E-ELT Instrumentation Project Office 5/14 GLaO NGS  #1: Seeing-limited  3 NGS GLAO [active optics + 10Hz TT ~few 100 low order aberrations incl. phase error propagation]  all clear/safe nights; whole sky; 10’ field; all 1 st level fast aO [always on]

E-ELT Instrumentation Project Office Impact of Cn2 profile (5’ FOV) Slide 6 Model 1: 46 % in first 500m, 0.6’’ seeing Model 2: 90% in first 500m, 0.6’’ seeing  Largest impact of all parameters for GLAO Model 3: 35% in first 500m, 1’’ seeing Model 4: 80% in first 500m, 1’’ seeing Difference between 25% best and 25% worst Paranal

E-ELT Instrumentation Project Office PSFs of GLAO Atm 1 Slide 7 KHJI GLAO seeing

E-ELT Instrumentation Project Office PSFs of GLAO Atm 2 Slide 8 KHJI GLAO seeing

E-ELT Instrumentation Project Office Limiting magnitude / Sky Coverage Slide 9 Approximate magnitude per guide star mRmR b=90°b=60°b=30°b=0° ’ FOV Numbers being cross validated with ESO astronomers Sky coverage by P. La Penna

E-ELT Instrumentation Project Office Universe expansion  cm/s V R over 20-year Exo-planet V R detection  cm/s V R over 2-year IGM low-  metallicity #1: Seeing-limited (fast aO) Light beam stabilization: T/T, focus,... optical domain CODEX (coudé Lab)  m;  ~ 1.2x10 5 ESO, Trieste & Brera, IAC, IoA, UniGe

E-ELT Instrumentation Project Office #1’: Improved Seeing (GLAO) Large Scale Structure/galaxy evolution  huge multiplex spectrometer reddish domain OPTIMOS: wide Field visual MOS (fibre or slit-based)

E-ELT Instrumentation Project Office Single Conjugate AO NGS 1 st light diffraction limited AO?  #2b: on-axis diffraction-limited  SCAO-NGS s a la NACO (< 1’ field); variable PSF  Visible & IR Wavefront sensor for highly obscured region  70-45% Strehl ratio in K; 80% EE in 75mas spaxel  11 mas FWHM, low sky coverage<2% Any instrument using AO at 1 st light? even in degraded Sky Coverage performance SIMPLE HARMONI MICADO METIS

E-ELT Instrumentation Project Office Telescope Adaptive Optics : Deformable Mirror Instruments WFS adaptor WFS arms (contain WFS detectors) Some instruments also contain WFS detectors WFS adaptor Pupil steering mirror Field steering mirror Reimaging lens Collimator Lenslet array 1100 mm Zoom optics Detector WFS arm preliminary optical design

E-ELT Instrumentation Project Office LGS-NGS GLAO  #1’: Improved seeing  GLAO + 4 LGS [fast T/T + ~ modes]; 250 mas FWHM  or with 3 NGS [30-50% sky in K; laser-adverse nights]  no/light* cirrus; ~ all seeing; ~ full sky in J-H-K  5’ field in K; ~40” at 600 nm - limited sky coverage 1 st level AO [mostly on] also 1 st step to MCAO, MOAO & XAO

E-ELT Instrumentation Project Office Number of LGSs for GLAO ? Slide 15 Old simulation conditions, so EE values should be scaled

E-ELT Instrumentation Project Office One possible M4 Adaptive Mirror May 12th, 2009 E-ELT Phase B Mid-term Review 16 7k actuators  WFE=113 nm rms (seeing 0.5 μm Full stroke of 80 μm Mirror positioned with a hexapod

E-ELT Instrumentation Project Office Another possible M4 unit E-ELT Mid-term review - May 2009 Slide 17 Shell machining 6k actuators  WFE=129 nm rms (seeing 0.5 μm Full stroke of 160 μm Mirror positioned with a hexapod + Nasmyth switcher

E-ELT Instrumentation Project Office Mounting frame Backside with support elements and actuators A possible 2.6m M5 field stabilization Unit

E-ELT Instrumentation Project Office 40 cm Laser launch Telescope Up to 2x20W laser unit each Relay, diagnostic tools Jitter, beam steering Enclosed baffle? LGS station access & servicing Laser Guide Star Concept: side launch

E-ELT Instrumentation Project Office Side launching fratricide effect (LGS beacons rotating with sky field) E-ELT BRDv3 Nov 2008 Slide 20 GLAO WFSs with 4LGSs MOAO WFSs with 6 LGSs

E-ELT Instrumentation Project Office E-ELT launch telescope baseline  VLT AOF Diameter:400mm Useful aperture: 300mm Unvignetted Fov:12’ Pointing precision: <0.1” Output Beam diameter 300 mm Beam magnification 20 WFE excluded focus:50nm rms Focus WFE:<  1 wave P-V at 589nm 589nm:T ≥ 95% Total max: <200kg Interface:TBD 4 units being designed & built by TNO-TPD (NL) for VLT-AOF

E-ELT Instrumentation Project Office N. HubinOPTICON board meeting Sodium Laser studies: AOF  E-ELT?  1st contract: PDR and Critical Technology Demonstrator development  Goal: to secure interfaces and critical technology (risk reduction)  2 studies & 2 risk reduction studies funded by (ESO, OPTICON) & (Keck, TMT, GMT & AURA)  Fasortronic (USA) & TOPTICA (GER): both have demonstrated >20W  Feb.- Nov 2009  Firm fixed price offer for 2 nd contract at the end of 1 st contract  2 nd contract: FDR & Pre-Production Unit (2010)  Final Design Phase: 6 months (incl. long lead items procurement)  Pre-Production Unit MAIT: 12 months  After go-no go milestone 2 nd contract: MAIT and delivery of 4 Laser Units  Laser Units MAIT and delivery: 17 months

E-ELT Instrumentation Project Office Sodium Laser Requirements  CW or QCW laser  Return flux: photons/m 2 /s per LGS at Nasmyth (Na column density: m -2 )  Baseline specification Emission wavelength: peak of the D 2a line in the mesosphere (≈589 nm) 25 W - line width = 50 MHz  10 MHz  Optional specification: making use of Sodium back-pumping! 2 lines emitted: peak of D 2a and D 2b lines in the mesosphere The frequency shift between the two lines shall be stable within  10 MHz 18 W in the D 2a line and 2 W in the D 2b line Linewidth between 40 MHz and 250 MHz (for both lines)  Laser beam quality (long term): M 2 < 1.3 (goal 1.1)

E-ELT Instrumentation Project Office 24/14 MOAO EAGLE & MAORY MCAO  #2a: Luminosity-limited  MOAO/6-8LGS s (5-10’ field) or MCAO/6LGS s (< 2’ field)  Spaxel of 75 mas; 30% Ensquared Energy  most sky; 75% seeing (K) / very good seeing (I) 2 nd level AO [photon-starved] Physics & mass assembly of galaxies to z ~4.7  highest H-K energy concentration (30%) in 75 mas Highest redshift galaxies at z > 6   highest patrol field (up to 10’ with MOAO) EAGLE  m IFS LAM, OPM, ONERA, UKATC, Durham

E-ELT Instrumentation Project Office 25/14 MCAO MAORY & LTAO ATLAS  #2b: Diffraction-limited  60% sky coverage & 50% seeing in K, Strehl(K)>40-50%  15% sky & exceptional seeing in I  ATLAS/6LGSs(15-30”field) & MAORY/6LGSs (< 2’ field) 2 nd level AO [maximal resolution] MAD ‘06 Ω Cen

E-ELT Instrumentation Project Office resolved stellar population imaging  1% photometric precision CMD in K-I resolved stellar population spectroscopy  good Strehl at 850 nm (Ca Triplet) resolved stellar population spectroscopy  good Strehl at 850 nm (Ca Triplet)  Z~2-5  L* galaxy imaging  very low-noise science detector  SMBH spectroscopy at center of galaxies  extremely low-noise science detector #2b: Diffraction-Limited (MCAO/LTAO) MICADO (SCAO 1 st light?)  m D-L imager MPE, MPIA, USM, INAF, NOVA HARMONI (SCAO 1 st light?)  m D-L single IFU Oxford, CRAL, DAMI. UKATC ATLAS

E-ELT Instrumentation Project Office EPICS: XAO & high contrast  #2b: Extreme contrast  25% seeing; zero field;  0.65 μm  XAO/NGS [~ modes]  also ‘visible’ AO  few 10-9 contrast so far Exo-planet direct detection  critical internal stability Debris disks 2 nd level AO [maximal Strehl] EPICS  m diff. spectro/polarimeter ESO, LAOG, LESIA, FIZEAU Lab, LAM ONERA, Oxford, Padova, ETHZ, NOVA X-AO Apodizer Differential extraction

E-ELT Instrumentation Project Office LTAO ATLAS & SCAO  Mid-IR AO (8-24 μm)  M4-M5 provides ATLAS/SCAO NGS on 60% sky (0.9 Strehl) (IR WFS for highly obscured regions)  ~ luminosity / diffraction-limited Circumstellar dust chemistry   PaH spectrometry (high-sensitivity N detector) Planet-forming dust emission METIS L-M-N-(Q) imager/spectrometer Leiden et al.

E-ELT Instrumentation Project Office A POSSIBLE AO & INSTRUMENT DISTRIBUTION (Nasmyth) Test Camera OPTIMOS MAORY MCAO module MICADO SCAO, LTAO module HARMONI METIS EPICS+ XAO

E-ELT Instrumentation Project Office A POSSIBLE INSTRUMENT DISTRIBUTION (GI & coudé) LTAO module Adaptor, GI feeding unit P HARMONI METIS EPICS+ XAO P LTAO GI Location envisaged EAGLE with MOAO & SIMPLE with SCAO or LTAO Coud è Location envisaged for CODEX with GLAO

E-ELT Instrumentation Project Office AO performance overview (preliminary) (seeing = 0.71 arcsec μm – on axis perf) AO typeNb N-LGSsStrehl(K) % EE in 75mas FWHM (mas) Sky Coverage % (60° lat.) PSF uniformity SCAO-NGS (postfocal) 1 NGS on- axis 70  mas2 anisoplanatism NGS-GLAO (Telescope) 3 NGS<0.3< good LGS GLAO (Telescope) 4LGS >4.2’ 1 NGS Very good EAGLE (Postfocal) 6-8LGSs>7.2’ 1 NGS N/A30>11100Sporadic PSF uniformity ATLAS (Postfocal) 6 LGSs>4.2’ 2 IR NGSs anisoplanatism MAORY (postfocal) 2’ 3 IR NGSs Excellent EPICS1NGS on axis90 in HFew 10-9 contrast 11Set of targets N/A Inputs from T. Fusco

E-ELT Instrumentation Project Office E-ELT AO Requirements?  A permanent Internal AO capability (NGSs)  to get decent images at all + MIR D-L SCAO  Giving a GLAO-based correction (+ LGSs)  most of the sky & time [cirrus/lasers permitting]  also LTAO for small field/high sky coverage near D-L  Often with an instrument-related 2 nd AO stage  wide patrol-field spectroscopy (MOAO/ MCAO )  diffraction-limited (spectro)-imagery (MCAO)  extreme-contrast (spectr./polar.)-imagery (XAO)  Pushing the envelope on every aspect  Strehl; energy concentration, sky coverage,,...  but also photometry, stability, astrometry, contrast....

E-ELT Instrumentation Project Office 33 Thank you for your patience! Thank you also to the whole European AO community for the hard work so far!!!

E-ELT Instrumentation Project Office E-ELT Adaptive Optics overview Telescope AO: with M4 & M5 correctors + LGSF – Ground Layer AO with 3 NGSs – Ground Layer AO with 4 LGSs – Engineering Single Conjugate AO Postfocal AO: M4 & M5 units as 1 st stage correctors – Laser Tomography AO Module: ATLAS – Multi-Conjugate AO Module: MAORY – Multi-Object AO integrated into EAGLE – Extreme AO integrated into EPICS (NGS) – Single Conjugate AO using IR WFS integrated into MIDIR (NGS+ LGS) – Single Conjugate AO using Vis WFS integrated into instruments (TBC) 34

E-ELT Instrumentation Project Office On-going research work to reduce spot elongation Perspectives for tomography: comparison of metapupils 3 LGS Central launch3 LGS Side launch less elongation where seen only once Side launch solution open options to use Fractal iterative method to further reduce the laser flux requirement  study on-going for MCAO as seen at 10 km altitude

E-ELT Instrumentation Project Office LGS : choice of a launching scheme Spot elongation and noise propagation Spot elongation and noise propagation E2E simulation. Telescope = 21m. Scaling factors 6 LGS position : 1 min ring Representative of 42 m Tomographic performance M1 ≡ M2 Even a small gain from a pure performance point of view ! More uniform propagation onto modes ! 36