Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.

Slides:



Advertisements
Similar presentations
Harmonisation of stratospheric NO 2 /O 3 column data products NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick and M. Van Roozendael Belgian.
Advertisements

DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
Interpreting MLS Observations of the Variabilities of Tropical Upper Tropospheric O 3 and CO Chenxia Cai, Qinbin Li, Nathaniel Livesey and Jonathan Jiang.
Xiong Liu ( Harvard-Smithsonian Center for Astrophysics Collaborators: Kelly Chance, Christopher Sioris, Robert.
1 Ozone Profile Retrieval from SBUV/2 Sweep Mode Data---Preliminary Results Xiong Liu, Kelly Chance Harvard-Smithsonian Center for Astrophysics Matthew.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
Xiong Liu, Kelly Chance, and Thomas Kurosu Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA The 36 th COSPAR Scientific Assembly Beijing,
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Thomas Kurosu, Christopher Sioris, Robert.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
1 Cross Evaluation of OMI, TES, and GEOS-Chem Tropospheric Ozone Xiong Liu 1, Lin Zhang 2, Kelly Chance 1, John R. Worden 3, Kevin W. Bowman 3, Thomas.
Assimilation of EOS-Aura Data in GEOS-5: Evaluation of ozone in the Upper Troposphere - Lower Stratosphere K. Wargan, S. Pawson, M. Olsen, J. Witte, A.
Rutherford Appleton Laboratory Remote Sensing Group Ozone Profile Retrieval from MetOp R. Siddans, G. Miles, B. Latter A. Waterfall, B. Kerridge Acknowledgements:
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Intercomparison methods for satellite sensors: application to tropospheric ozone and CO measurements from Aura Daniel J. Jacob, Lin Zhang, Monika Kopacz.
Occurrence of TOMS V7 Level-2 Ozone Anomalies over Cloudy Areas Xiong Liu, 1 Mike Newchurch, 1,2 and Jae Kim 1,3 1. Department of Atmospheric Science,
Xiong Liu, Mike Newchurch Department of Atmospheric Science University of Alabama in Huntsville, Huntsville, Alabama, USA
SO 2 Retrievals in the UV from Space Caroline Nowlan Atomic and Molecular Physics Division Harvard-Smithsonian Center for Astrophysics Collaborators: Kelly.
Using Satellite Data to Infer Surface Emissions and Boundary Layer Concentrations of NO x (and SO 2 ) Randall Martin With contributions from: Xiong Liu,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
S5P tropospheric ozone product: Convective Cloud Differential method First German S5P Verification Meeting Bremen, November 2013 Pieter Valks DLR,
S5P Ozone Profile (including Troposphere) verification: RAL Algorithm R.Siddans, G.Miles, B.Latter S5P Verification Workshop, MPIC, Mainz th May.
Retrieval and Interpretation of Tropospheric Observations from GOME Randall Martin Daniel Jacob Paul Palmer Sushil Chandra Jerry Ziemke Mian Chin Kelly.
TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
ANALYSIS OF TROPOSPHERIC OBSERVATIONS FROM GOME AND TOMS Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer Harvard University Kelly Chance, Thomas.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
NASA/GSFC Tropospheric Ozone Residual M. Schoeberl NASA/GSFC M. Schoeberl NASA/GSFC.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
1 Preliminary Ozone Profile and Tropospheric Ozone Retrievals From OMI Xiong Liu 1,2, Kelly Chance 2, Lin Zhang 3, Thomas P. Kurosu 2, John R. Worden 4,
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Critical Assessment of TOMS-derived Tropospheric Ozone: Comparisons with Other Measurements and Model Evaluation of Controlling Processes M. Newchurch.
Using CO observations from space to track long-range transport of pollution Daniel J. Jacob with Patrick Kim, Peter Zoogman, Helen Wang and funding from.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Critical Assessment of TOMS-derived Tropospheric Ozone: Comparisons with Other Measurements and Model Evaluation of Controlling Processes M. Newchurch.
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
March 21, ‘06 comp. May 5, ‘06 comp Summary ~4% swath angle dependent difference Up to 9% difference over clouds Differences correlate with snow/ice.
1 uni-bremen 04/2002 GOME2 Error Assessment Study Error Budget, Error Mitigation and Proposal for Future Work Mark Weber, Rüdiger.
Abstract We intercompare Stratospheric Column Ozone (SCO) and ozone profiles retrieved from GOME data with ozonesonde and SAGE-II data for GOME.
Impact of OMI data on assimilated ozone Kris Wargan, I. Stajner, M. Sienkiewicz, S. Pawson, L. Froidevaux, N. Livesey, and P. K. Bhartia   Data and approach.
1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting,
J. Kar (UT), H. Bremer (UB), James R. Drummond (UT), F
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
Evaluation of the MERRA-2 Assimilated Ozone Product
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Kelly Chance Smithsonian Astrophysical Observatory
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Intercomparison of tropospheric ozone measurements from TES and OMI
Presentation transcript:

Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME

2 Outline n Introduction n Algorithm description n Retrieval characterization n Intercomparison with Ozonesonde, TOMS, and Dobson n Global distribution of tropospheric ozone and comparison with GEOS-CHEM model results n Summary and future work

3 Introduction n Current tropospheric ozone retrievals are mainly based on the residual approaches: limited to certain latitude ranges and to monthly level n GOME: first nadir-viewing satellite instrument that allows direct tropospheric ozone retrieval from the space. n Several groups [Munro et al., 1998; Hoogen et al., 1999; Hasekamp et al., 2001; van der A et al, 2002; Muller et al., 2003; Liu et al., 2004] have developed ozone profile retrieval algorithms from GOME: each of them demonstrates that limited tropospheric ozone information can be derived. n However, tropospheric ozone retrieval remains very challenging from GOME: u Require accurate and consistent calibrations. u Need to fit the Huggins bands to high precision. u Tropospheric ozone is only ~10% of total column ozone.

4 Algorithm Description n Inversion technique: Optimal Estimation n Measurements: nm, nm; Spatial resolution: 960×80 km 2 n Perform detailed wavelength and radiometric calibrations:  Derive variable slit widths and shifts between radiances/irradiances  Fit shifts between trace gas absorption cross-sections and radiances  Co-add adjacent pixels from nm to reduce noise  Improve polarization correction using GOMECAL (  Perform undersampling correction with a high-resolution solar reference  Fit degradation for nm on line in the retrieval n Use LIDORT to simulate radiances and weighting functions n Improve forward model simulation:  On-line correction of Ring filling in of the solar and telluric absorption feature with first-order single scattering RRS model [Sioris and Evans, 2002]  Look-up table correction of polarization errors [van Oss, personal comm.]  Monthly-mean SAGE stratospheric aerosols [Bauman et al., 2003]  GEOS-CHEM tropospheric aerosols [Martin et al., 2002]

5 Variable Slit Widths and Shifts

6 Algorithm Description n Improve forward model simulation (continue):  Brion’s ozone absorption cross-sections [Brion et al., 1993]  Daily ECMWF temperature profiles (  Daily NCEP/NCAR surface pressure (  Cloud-top height from GOMECAT [Kurosu et al., 1999]  Cloud fraction derived at nm with albedo database [Kolemeijer et al.,2003]  Wavelength dependent albedo (2-order polynomial) from nm n A priori: latitude and monthly dependent TOMS V8 climatology (a priori and its variance) [McPeters et al., 2003, AGU] n Retrieval Grid: 11 layers, almost the same as the Umkehr grid  Bottom 2-3 layers are modified by tropopause/surface pressure  Tropospheric column ozone is directly retrieved n State Vector: 47 parameters  11 O albedo (1 for ch1a & 3 for ch2b) + 4 Ring (1 for ch1a & 3 for ch2b) + 8 O 3 shift + 8 rad./irrad. shift + 3 degradation correction (ch1a only) + 2 undersampling + 2 NO BrO + 2 SO internal scattering n Fitting residual: 0.40% for band 1a, 0.17% for band 2b, 0.3% for both n Speed : ~17 hours on a 2GHz processor for one day, could be operational

7 Retrieval Characterization n Averaging Kernel: characterize the retrieval n DFS: diagonal elements of averaging kernels n A priori influence:

8 Examples of Averaging Kernels

9

10 A Priori Influence (06/7-9/1997) TOMS V8 A Priori GEOS-CHEM A Priori Retrieval with TOMS V8 A Priori Retrieval with GEOS-CHEM A Priori

11 Retrieval Errors

12 Validation and Intercomparison n GOME data are collocated at 25 ozonesonde stations during n Validate retrievals against TOMS V8, Dobson/Brewer total ozone, and ozonesonde. n Ozonesonde data mostly from WOUDC, and some from CMDL, SHADOZ, and NDSC. n Collocation criteria:  Within ~8 hours, 1.5° latitude and ~500 km in longitude  Average all TOMS points within GOME footprint n Number of comparisons: 4429, 952, and 1937 with TOMS, Dobson, and ozonesonde, respectively

13 n GOME-Dobson: within retrieval uncertainties and ozone variability.  Biases: <5 DU, and <8 DU at two high-latitude stations  1  : 3-6 DU in the tropics, 6-19 DU at higher latitudes. Total Column Ozone Comparison n GOME-TOMS: within retrieval uncertainties and saptiotemporal variability.  Biases: <3 DU except 3-8 DU at a few high-latitude stations  1  : 2-4 DU in the tropics, 4-11 DU at higher latitudes. A Priori Retrieval Dobson TOMS

14 n GOME-Ozonesonde:  Systematic differences exists at Carbon Iodine, CMDL, SHADOZ stations  Bias: <3 DU (2%), except at Ny Ålesund and Neumayer (-3.3% and 4.5%)  1  : 4-9 DU (4-6%) in the tropics and DU (5-10%) at higher latitudes. Stratospheric Column Ozone Comparison A Priori Retrieval Ozonesonde Column ozone between tropopause to~30-35 km 1%-KI buffered 2%-KI unbuffered

15 A Priori Retrieval Ozonesonde n GOME-SONDE within retrieval uncertainties.  Biases: <4 DU (15%) except –5.5, 4.4, 5.6 DU (16-33%) at NyÅlesund, Naha, Tahiti  1  : 3-7 DU (13-28%) A Priori Retrieval Ozonesonde n GOME-SONDE within retrieval uncertainties.  Biases: <4 DU (15%) except –5.5, 4.4, 5.6 DU (16-33%) at NyÅlesund, Naha, Tahiti  1  : 3-7 DU (13-28%) Tropospheric Column Ozone Comparison

16 n The degradation is well handled n GOME retrievals agree well with ozonesonde  Biases: <2 DU (10%)  1  : <10 DU (25%) Profile: Hohenpeißenberg (48N,11E), A Priori Retrieval Ozonesonde

17 n Positive bias in the middle, negative bias at two ends, probably due to some systematic bias in radiance spectra and the wavelength dependent correction is not perfect.  Biases: < 4 DU (40%)  1  : <4 DU (30%) n Bias in tropospheric/stratospheric column ozone is reduced due to canceling errors. Profile: America Samoa (14S,171W), A Priori Retrieval Ozonesonde

18 Examples of Daily Global Tropospheric Ozone High ozone over biomass burning South Atlantic Paradox Low tropospheric ozone in tropical Pacific Bands of high ozone at mid-latitudes High ozone at high-latitudes during late winter and early spring

19 Monthly Mean Tropospheric Ozone (09/96-11/97)

20 GOME vs. GEOS-CHEM Tropospheric Ozone SON,96 R= ±6.8DU DJF,96-97 R= ±5.3DU MAM,97 R= ±4.5DU JJA,97 R= ±5.7DU

21 Summary n Ozone profiles and tropospheric column ozone are derived from GOME using the optimal estimation approach after detailed treatments of wavelength and radiometric calibrations and improvement of forward model inputs. n Retrieved total ozone compares very well with TOMS and Dobson/Brewer total ozone. n The profiles, stratospheric ozone, and tropospheric ozone compare well with ozonesonde observations except some stratospheric bias at Carbon Iodine stations, CMDL, and SHADOZ stations. n Global distribution of tropospheric ozone is presented. It clearly shows the signals due to biomass burning, air pollution, stratospheric- troposphere exchange, transport and convection. n The overall structures of retrieved tropospheric ozone are similar to those of GEOS-CHEM, but significant differences exist.

22 Future Work n Complete tropospheric ozone retrieval for the 8-year GOME data record and apply the algorithm to SCIMACHY and OMI data n With the aid of GEOS-CHEM, other observations, or model fields, understand the GOME/GEOS-CHEM similarities and differences, and investigate global/regional distribution of tropospheric ozone. n Tropospheric ozone radiative forcing n Tropospheric/stratospheric ozone variability

23 GOME vs. GEOS-CHEM Tropospheric Ozone

24 GOME vs. GEOS-CHEM Tropospheric Ozone

25 GOME vs. GEOS-CHEM Tropospheric Ozone

26 GOME vs. GEOS-CHEM Tropospheric Ozone

27 GOME vs. GEOS-CHEM Tropospheric Ozone