Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz New automatic weather type classifications at MeteoSwiss.

Slides:



Advertisements
Similar presentations
Willem A. Landman & Francois Engelbrecht.  Nowcasting: A description of current weather parameters and 0 to 2 hours’ description of forecast weather.
Advertisements

Details for Today: DATE:3 rd February 2005 BY:Mark Cresswell FOLLOWED BY:Assignment 2 briefing Evaluation of Model Performance 69EG3137 – Impacts & Models.
1 Research activities Climate Services & NCCR Christof Appenzeller et al. Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Improving COSMO-LEPS forecasts of extreme events with.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Application of WIGOS principles at MeteoSwiss Bertrand.
Statistical Postprocessing of Weather Parameters for a High-Resolution Limited-Area Model Ulrich Damrath Volker Renner Susanne Theis Andreas Hense.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
An Automated Synoptic Typing System Using Archived And Real-time NWP Model Output Robert Dahni Meteorological Systems Central Operations and Systems Branch.
Assessment of hailstorms in WRF weather simulations over Switzerland in summer Sensitivity, climatology, comparison with observation data Andrey.
Verification of Numerical Weather Prediction systems employed by the Australian Bureau of Meteorology over East Antarctica during the summer season.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Long records of weather measurements at Jungfraujoch.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Automating Peak-over- Threshold with the Information.
Ensemble Post-Processing and it’s Potential Benefits for the Operational Forecaster Michael Erickson and Brian A. Colle School of Marine and Atmospheric.
Chapter 13 – Weather Analysis and Forecasting. The National Weather Service The National Weather Service (NWS) is responsible for forecasts several times.
COSMO General Meeting Zurich, 2005 Institute of Meteorology and Water Management Warsaw, Poland- 1 - Verification of the LM at IMGW Katarzyna Starosta,
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Measurements at MeteoSwiss and its application for.
Wind Regimes of Southern California winter S. Conil 1,2, A. Hall 1 and M. Ghil 1,2 1 Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles,
The National Environmental Agency of Georgia L. Megrelidze, N. Kutaladze, Kh. Kokosadze NWP Local Area Models’ Failure in Simulation of Eastern Invasion.
Climate Forecasting Unit Prediction of climate extreme events at seasonal and decadal time scale Aida Pintó Biescas.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistical Characteristics of High- Resolution COSMO.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Report on Workshop « Stratified verification by weather.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Data mining in the joint D- PHASE and COPS archive Mathias.
A Comparison of the Northern American Regional Reanalysis (NARR) to an Ensemble of Analyses Including CFSR Wesley Ebisuzaki 1, Fedor Mesinger 2, Li Zhang.
Verification methods - towards a user oriented verification WG5.
Rozinkina Inna, Kukanova Evgenia, Revokatova Anastasia, & Muravev Anatoly, Glebova Ekaterina.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Pollen emission in COSMO-ART COSMO User Workshop
Henry Fuelberg Pete Saunders Pendleton, Oregon Research Region Map Types and Lightning Frequencies.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Using seasonal forecasts to estimate current climate.
Use of radar data in ALADIN Marián Jurašek Slovak Hydrometeorological Institute.
Utskifting av bakgrunnsbilde: -Høyreklikk på lysbildet og velg «Formater bakgrunn» -Under «Fyll», velg «Bilde eller tekstur» og deretter «Fil…» -Velg ønsket.
Federal Departement of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Revisiting Swiss temperature trends * Paulo.
Extremes in Surface Climate Parameters and Atmospheric Circulation Patterns in Eastern Germany and Estonia Andreas Hoy.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz First Experience with KENDA at MeteoSwiss Daniel Leuenberger,
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Quantitative precipitation forecast in the Alps Verification.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Weather types and gridding of daily precipitation in the.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz The challenge to verify operational weather warnings.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss A more reliable COSMO-LEPS F. Fundel, A. Walser, M. A.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
Fig Decadal averages of the seasonal and annual mean anomalies for (a) temperature at Faraday/Vernadsky, (b) temperature at Marambio, and (c) SAM.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz The new multi-layer snow model Guy de Morsier 1, Jean-Marie.
One-year re-forecast ensembles with CCSM3.0 using initial states for 1 January and 1 July in Model: CCSM3 is a coupled climate model with state-of-the-art.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Tuning the horizontal diffusion in the COSMO model.
CMEMS Mediterranean MFC. Update on specific development for CMEMS Med-MFC V2 Analysis and Forecast Product 1.Data Assimilation: Grid point EOFs ( * )
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Automatic weather classification at MeteoSwiss Tanja.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Weather type dependant fuzzy verification of precipitation.
A study on the spread/error relationship of the COSMO-LEPS ensemble Purpose of the work  The spread-error spatial relationship is good, especially after.
10th COSMO General Meeting, Cracow, Poland Verification of COSMOGR Over Greece 10 th COSMO General Meeting Cracow, Poland.
VERIFICATION OF A DOWNSCALING SEQUENCE APPLIED TO MEDIUM RANGE METEOROLOGICAL PREDICTIONS FOR GLOBAL FLOOD PREDICTION Nathalie Voisin, Andy W. Wood and.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Assessing the skill of decadal predictions Reidun Gangstø,
Verification methods - towards a user oriented verification The verification group.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Weather type dependant fuzzy verification of precipitation.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Ensemble activites and plans at MeteoSwiss André Walser.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss WG4 activities Pierre Eckert MeteoSwiss, Geneva.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
Exploring and Validating LM Performances at Very High Resolution M. Didone, D. Lüthi, H.C Davies Institute for Atmospheric and Climate Science, ETH Zürich.
SAL - Structure, Ampliutde, Location
Predictability: How can we predict the climate decades into the future when we can’t even predict the weather for next week? Predictability of the first.
GPC-Seoul: Status and future plans
Antecedent Environments Conducive to the Production of Extreme Temperature and Precipitation Events in the United States Andrew C. Winters, Daniel Keyser,
A New Method for Evaluating Regional Air Quality Forecasts
Dynamical downscaling of ERA-40 with WRF in complex terrain in Norway – comparison with ENSEMBLES U. Heikkilä, A. D. Sandvik and A.
WG5-Report from Switzerland: Verification of aLMo in the year 2005
Daniel Leuenberger1, Christian Keil2 and George Craig2
Nathalie Voisin, Andy W. Wood and Dennis P. Lettenmaier
Klára Ambrožová1*, Kamil Láska1
On HRM3 (a.k.a. HadRM3P, a.k.a. PRECIS) North American simulations
Quantitative verification of cloud fraction forecasts
Verification of COSMO-LEPS and coupling with a hydrologic model
Christoph Gebhardt, Zied Ben Bouallègue, Michael Buchhold
Analysis of Southern European Cold Spells via a
Presentation transcript:

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz New automatic weather type classifications at MeteoSwiss Tanja Weusthoff EMS,

2 Weather type classifications | EMS, Tanja Weusthoff 1. Introduction: New Classifications  The existing manual weather type classifications have been replaced by n ew (automatic) weather type classifications in January OLD NEW Alpenwetterstatistik AWS Perret Zala-Klassifikation manual, until GWT & CAP/PCACA automated, since Januar 2011, recalculated from

3 Weather type classifications | EMS, Tanja Weusthoff 1. Introduction: Cost733 COST 733: “Harmonisation and Applications of Weather Type Classifications for European regions“ ( ) Provides:  Catalogues of classifications calculated for various European domains cost733cat-1 - original classification of the respective author cost733cat recalculated classifications using cost733class software  Software for individual calculations of weather type classifications cost733class Evaluation of catalogue costcat733-1 with regard to the variability of daily precipitation in the Alpine region (Schiemann and Frei, 2010) Selection of suitable weather types for operationalisation in a MeteoSwiss-wide „Beauty Contest“

4 Weather type classifications | EMS, Tanja Weusthoff differentiation convective / advective by means of wind in 500 hPa convective: surface pressure for classification into high, low and flat pressure advective: wind directions using GWT8_Z500 classification classification with predefined types correlation with „prototype“ patterns classification of each input field by means of the three correlation coefficients and their combination main wind directions, high and low pressure STEP 1: Weather types are derived by means of a principal component analysis and subsequent clustering based on ERA40 data. STEP 2: Actual days are assigned to the derived classes by simple distance measures. 1. Introduction: Methods  Overall 10 classifications are calculated each day, based on two different methods using the ECMWF 12 UTC analysis (and forecast) data. 1. CAP = Cluster Analysis of Principal Component 2. GWT = GrossWetterTypes 3. GWTWS = adapted GWT CAP9, CAP18 und CAP27 based on MSL GWT10, GWT18 und GWT26 based on (1) MSL and (2) Z500 GWTWS with 11 classes based on GWT8 for Z500, mean wind in 500 hPa and mean surface pressure

5 Weather type classifications | EMS, Tanja Weusthoff 1. Introduction: Data daily calculation (since ) using 12 UTC run of the operational ECMWF model IFS; analysis and forecasts up to 10 days are classified classifications recalculated using ECMWF reanalysis ERA ERA interim Domain: Alps 41N - 52N (12pts) 3E - 20E (18pts)

6 Weather type classifications | EMS, Tanja Weusthoff Brier Skill Score (BSS) How good can weather type classifications quantify surface climate variability in the Alps? use quantiles to define an event (for each grid box); y i = empirical frequency of the event occuring for weather type i; ō = climatological frequency of a event independant of weather type; perfect forecast: BS perf = 0; reference forecast: y i = ō;  simple form of Brier Skill Score:  consider WTC as a framework that yields a probabilistic forecast (Schiemann und Frei, 2010) 2. Evaluations: BSS BSS shows an increase with the number of classes  compare only weather type classifications with a similar number of classes

7 Weather type classifications | EMS, Tanja Weusthoff daily weather types from 10 automatic and two manual classifications (Schüepp, Perret) gridded daily precipitation data for the Alps, 25 km resolution, (Frei and Schär, 1998; Frei and Schmidli, 2006 ) gridded daily mean temperature, project ENSEMBLES (Haylock et al. 2008), 0.5° resolution, interpolated to the same 25 km grid 2. Evaluations: BSS (data basis)

8 Weather type classifications | EMS, Tanja Weusthoff CAP27 explains precipitation in the Alps best, considering only few classes  CAP9 best rather small differences between the individual classifications 2. Evaluations: BSS (precipitation in the Alps) 26 classes and more18 classes9-11 classesmanual

9 Weather type classifications | EMS, Tanja Weusthoff Clear differences between the classifications, e.g. : GWTxx_Z500 better south of the Alps, GWTxx_MSL better on the alpine ridge and in the north of the Alps, CAP27 best in the western part of the domain. 2. Evaluations: BSS (precipitation in the Alps)

10 Weather type classifications | EMS, Tanja Weusthoff larger differences between individual classifications CAP27 explains variability of temperature best when the whole year is considered considering only few classes  CAP9 best 2. Evaluations: BSS (temperature in the Alps) 26 classes and more18 classes9-11 classesmanual

11 Weather type classifications | EMS, Tanja Weusthoff … Schüepp better in individual seasons, especially in summer 26 classes and more18 classes9-11 classesmanual 2. Evaluations: BSS (temperature in the Alps)

12 Weather type classifications | EMS, Tanja Weusthoff clear differences between the classifications, e.g.: GWTxx_Z500 better on the Alpine ridge, GWTxx_MSL and CAP better in the north of the Alps, Schüepp clearly better in summer. 2. Evaluations: BSS (temperature in the Alps)

13 Weather type classifications | EMS, Tanja Weusthoff No influence on precipitation results. Large influence on temperature results. SP = mean sea level pressure Z5 = 500hPa geopotential height Y5 = 500hPa geopotential height K5 = thickness between 500 hPa and 850 hPa 26 classes and more 18 classes 9-11 classes manual 2 input parameters 3 and more input parameters precipitationtemperature 2. Evaluations: BSS (additional input parameters)  cost733cat-2.0

14 Weather type classifications | EMS, Tanja Weusthoff 3. Summary 10 new weather type classifications introduced at MeteoSwiss all weather types available from Description and a report available on MeteoSwiss Websites the best suited weather type classification depends on the respective application already in use for various applications (e.g. verification, climate analyses, …)

15 Weather type classifications | EMS, Tanja Weusthoff standard_produkte/wetterlagenklassifizierung.html Report Weusthoff, T., 2011: Weather Type Classification at MeteoSwiss – Introduction of new automatic classifications schemes, Arbeitsberichte der MeteoSchweiz, 235, 46 pp. Thank you for the attention...