57Fe Mössbauer Spectroscopy

Slides:



Advertisements
Similar presentations
Inorganic Chemistry Laboratory
Advertisements

When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
NMR Spectroscopy.
Chapter 4- Products of Weathering Several things can happen to products 1- removal of materials by leaching e.g., CaCO 3 2- reaction of materials, either.
Early martian surface conditions from thermodynamics of phyllosilicates Vincent F. Chevrier Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes?
Chapter 2 continued Inorganic soil solids.
Soil Mineralogy and Chemistry Lecture 4. Phyllosilicate Minerals.
Chapter 2 Inorganic Solids in Soil continued.
Effects of Impact and Heating on the Properties of Clays on Mars Patricia Gavin V. Chevrier, K. Ninagawa, S. Hasegawa.
6-1 RFSS: Lecture 6 Gamma Decay Part 2 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
X-Ray Diffraction for Soils
Analysis of Iron Oxidation in Garnets By, Erica A. Emerson By, Erica A. Emerson.
1 Chapter 19Coordination Complexes 19.1The Formation of Coordination Complexes 19.2Structures of Coordination Complexes 19.3Crystal-Field Theory and Magnetic.
Structural Analysis AH Chemistry Unit 3(d). Overview Elemental microanalysis Mass spectroscopy Infra-red spectroscopy NMR spectroscopy X-ray crystallography.
Tools of the Trade 1- Atomic resolution: X-ray crystallography 2- NMR spectroscopy 3- de novo Modeling and structure determination, Homology modeling 4-
Corey Thompson Technique Presentation 03/21/2011
SPECTRAL PROPERTIES OF AKAGANÉITE AND SCHWERTMANNITE AND GEOCHEMICAL IMPLICATIONS OF THEIR PRESENCE ON MARS JANICE BISHOP & ENVER MURAD.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Mossbauer Spectroscopy
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Building Soil Minerals. EXPECTED ION CORRDINATION.
Spectroscopy. Spectroscopy – Getting Ready  What happens when an electron absorbs energy?  What kind of energy can cause this to happen?  Why do different.
What is NMR? NMR is a technique used to probe the structure of molecules. Paired with other techniques such as MS and elemental analysis it can be used.
Structural and Magnetic properties of α-Fe 2 O 3 Nanoparticles د.محمد عبد الله ولد محمد الأمين قسم الفيزياء كلية العلوم جامعة الإمام محمد بن سعود الإسلامية.
Week 11 © Pearson Education Ltd 2009 This document may have been altered from the original State that NMR spectroscopy involves interaction of materials.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Chapter 10 - Soil Fertility. Essential Plant Nutrients - 14 are Mineral Based Macros - N, P, K, Ca, Mg, S Micros - B, Cu, Cl, Fe, Mn, Mo, Zn, Ni.
Mössbauer spectroscopic studies by T.SHINJO. Degree of interlayer mixing is different at the two interfaces (head and tail). A result for Fe layer in.
Weathering -II.
NMR Spectroscopy. NMR NMR uses energy in the radio frequency range. NMR uses energy in the radio frequency range. This energy is too low to cause changes.
Chapter 2: IR Spectroscopy Paras Shah
1. Medium for Plant growth  provides anchorage  ventilation, soil pores allow CO2, formed through root respiration escape to the atmosphere and O2 to.
Transition Metal Chemistry and Coordination Compounds Chapter 20 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
INTRODUCTION The oxidation state of iron indicates the amount of oxygen present when a mineral is formed. If the environment was abundant in oxygen, many.
Minerals Ionic Solids Types of bonds Covalentbonding e - s shared equally Ionic coulombic attraction between anion and cation e - s localized Ionic / covalent.
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
1 Mössbauer Effect J-H. Kim
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
NUCLEAR MAGNETIC RESONANCE SPECTROSCPY A guide for A level students KNOCKHARDY PUBLISHING.
Soil Clay Minerals and CEC
Comparing erbium moments derived from 166 Er Mössbauer spectroscopy and neutron diffraction D.H. Ryan and J.M. Cadogan Physics Department, McGill University,
Infrared Spectroscopy
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Lecture 8: Volume Interactions Thursday, 28 January 2010 Ch 1.8 Major spectral features of minerals (p. xiii-xv), from Infrared.
Soil Mineralogy and Chemistry Lecture 4. Phyllosilicate Minerals.
Dust deposited on Colorado mountain snow cover: Effects on snow albedo and linkages to dust-source areas © Center for Snow and Avalanche Studies Photo.
Mössbauer Spectroscopy of Cobalt Ferrites Andrew Watson Dr. Kelly Krieble γ Fe 57 γ.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
Particle Size Dependence of Magnetic Properties in Cobalt Ferrite Nanoparticles Jun Hee Cho 1, Sang Gil Ko 1, Yang kyu Ahn 1, Eun Jung Choi 2 * 1 Department.
University of Ioannina
Mössbauer spectroscopy
NMR spectroscopy – key principles
Basic Soil-Plant Relationships
Basic Soil-Plant Relationships
Lecture 8: Volume Interactions
آزمايشگاه فناوري نانو کفا آزمايشگاه فناوري نانو کفا
CHEM 312: Lecture 6 Part 2 Gamma Decay
Determination of Structure
Lecture 8: Volume Interactions
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Useful Element Notations
Lecture 8: Volume Interactions
Ion-beam, photon and hyperfine methods in nano-structured materials
Linear Polyenes: Models for the Spectroscopy and Photochemistry of Carotenoids Ronald L. Christensen, Department of Chemistry, Bowdoin College Brunswick,
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Presentation transcript:

57Fe Mössbauer Spectroscopy : a Tool for the Remote Characterization of Phyllosilicates? Enver Murad Marktredwitz, Germany Enver Murad Marktredwitz, Germany

Basic principles of Mössbauer spectroscopy

Free emitting and absorbing atoms γ-ray energy Energy of recoil Mass of atom

Emitting and absorbing atoms fixed in a lattice Mössbauer spectroscopy is the recoil-free emission and absorption of gamma rays Mass of particle

Appearance of Mössbauer spectra Depending on the local environments of the Fe atoms and the magnetic properties, Mössbauer spectra of iron oxides can consist of a singlet, a doublet, or a sextet. Magnetic hyperfine field Quadrupole splitting Isomer shift δ Δ Bhf Symmetric charge No magnetic field Asymmetric charge No magnetic field Symmetric or asymmetric charge Magnetic field (internal or external)

Fe3+ Fe2+

Use of Mössbauer spectroscopy as a “fingerprinting” technique Isomer shifts and quadrupole splittings of Fe-bearing phases vary systematically as a function of Fe oxidation, Fe spin states, and Fe coordination. Knowledge of the Mössbauer parameters can therefore be used to “fingerprint” an unknown phase.

Hyperfine parameters of Fe3+ oxides Mineral Ordering temperature (K) Magnetic hyperfine fields RT: Bhf (T) 4.2 K: Bhf (T) Δ (mm/s) Hematite 950 51.8 53.5 -0.20 / 54.2 +0.41 Magnetite 850 49.2 + 46.1 50.6 { + 36 – 52 } Maghemite ~ 950 50.0 + 50.0 52.0 + 53.0 ≤|0.02| Goethite 400 38.0 50.6 -0.25 Akaganéite 299   – 47.3 + 47.8 + 48.9 Lepidocrocite 77 – 45.8 0.02 Feroxyhyte 450 41 53 + 52 ~0.0 Ferrihydrite 25 – 115 47 – 50 -0.02 – -0.07 Bernalite 427 41.5 56.2 ≤|0.01| ≤ ≤≤≤≤≤≤ ≤ ≤≤≤  ≤ ≤ ≤ ≤≤≤≤≤≤ # * ≤ ≤ * Magnetic blocking temperature # several B-site subspectra below 120 K

Iron in phyllosilicates

1:1 phyllosilicates 2:1 phyllosilicates Fe3+ Fe2+, Fe3+ Fe3+

Classification of clay-sized phyllosilicates (clay minerals sensu stricto) Layer type Octahedral occupancy Octahedral charge 1 Central cation(s) Group Common species 1 : 1 Di 2 Al Kaolin Kaolinite, halloysite Tri 3 Mg Serpentine Lizardite, chrysotile 2 : 1 Di < 0.2 Pyrophyllite Tri Talc Talc, minnesotaite Di / Tri 0.2 – 0.6 Al, Mg, Fe Smectite Montmorillonite, nontronite 0.6 – 0.9 Vermiculite > 0.9 Mica Illite, glauconite 2 : 1 (: 1) Chlorite Clinochlore, chamosite , (Fe) , (Fe) , (Fe) , (Fe) 1 Per formula unit [O10(OH)2], 2/3 Dioctahedral/Trioctahedral

Mössbauer spectra of selected “simple” (pure) clay minerals

The “simplest” clay mineral: kaolinite [Al2Si2O5(OH)4] Kaolin / Jari @ 295 K

Kaolin / Jari @ 4.2 K

Mössbauer parameters of clay minerals Temp Isomer shift (δ/Fe) Quadruple splitting (Δ) Kaolinite RT 0.35 0.51 * * * Average values. Isomer shift relative to α­Fe at room temperature. Only Fe3+ considered.

Illite: (K,H3O)x+y(Al2-xMx)(Si4-yAly)O10(OH)2 Fe3+: 2 Δ Fe3+: P(Δ) Illite OECD #5

Mössbauer parameters of clay minerals Temp Isomer shift (δ/Fe) Quadruple splitting (Δ) Kaolinite RT 0.35 0.51 Illite 0.59 – 0.73 * * Average values for Fe-poor (≤ 3% Fe) and Fe-rich (> 5% Fe) samples, respectively

Nontronite: MxFe2 (Si4-xFex)O10(OH)2 3+ 23.46 % Fe RT 1.44 % Fed → 2.3 % Gt From Asext → 1.4 % Gt 77 K Nontronite API H33a

Nontronite: MxFe2 (Si4-xFex)O10(OH)2 3+ Fe2+/(Fe2++Fe3+) = 0.15 DCB Reoxidized 644 days in air → no Fe2+ Nontronite API H33a

Mössbauer parameters of clay minerals Temp Isomer shift (δ/Fe) Quadruple splitting (Δ) Kaolinite RT 0.35 0.51 Illite 0.59 – 0.73 Nontronite

Complex natural clays : “The real world”

Phyllosilicate with intercalated interlayer: “Nature’s trashcan” H2O CH4 Fe3+ Fe2+ Phyllosilicate with intercalated interlayer: “Nature’s trashcan” Note: Fe-containing interlayer must be frozen to show Mössbauer Effect Phyllosilicate with intercalated interlayer Physics Today 61 (8)

DCB-treated −0.11 % goethite Kaolin “Wolfka” @ 4.2 K

Bauxite

Red soil

Extraterrestrial Mössbauer spectroscopy  Lunar samples  In situ Mössbauer spectroscopy on Mars

Lunar “soil” 10084 S.S. Hafner, 1975: “The data should not ... be interpreted in an isolated form, but ... correlated with the results of other techniques ...”. For lunar samples, this is possible !

——— Fe2+ sulfate ? ? ? “The data should not ... be interpreted in an isolated form, but ... correlated with the results of other techniques ...” (S.S. Hafner 1975) “… we assign the broad doublet present in Mössbauer spectra of [Mars] soils to be due to Fe2+ sulfates rather than olivine … ” (Bishop et al. 2004) NASA/JPL/University of Mainz

Summar y

Strengths and weaknesses of 57Fe Mössbauer spectroscopy Sensitive only to 57Fe (no matrix effects) Sensitive to oxidation state Allows distinction of magnetic phases Very sensitive towards magnetic phases Non-destructive Resolution limited by uncertainty principle Sensitive only to 57Fe (“sees” only 57Fe) Coordination ? to ± Paramagnetic phase data often ambiguous Diamagnetic element substitution & relaxation Slow If possible, use other techniques as well Often a combination of Mössbauer spectroscopy with other techniques can help solve problems that cannot be resolved using Mössbauer spectroscopy alone.