BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.

Slides:



Advertisements
Similar presentations
Viruses: A Borrowed Life
Advertisements

Chapter 19 Viruses.
Ch. 19 Viruses Objective: EK 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Viruses (Ch. 18).
Viruses, part 2.
DNA technology has many useful applications
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture 29: Viruses 0.5 m.
CHAPTER 10 Molecular Biology of the Gene
Viruses: a kind of “borrowed life” HIV infected T-cell.
Scene from the 1918 influenza pandemic.. Scene from the 2003 SARS Scare.
Chapter 19 Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN 10.6 The DNA genotype.
Viral Life Cycles & Viruses
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Genetics of Viruses
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Viruses Gene Regulation results in differential Gene Expression, leading to cell Specialization.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
Biology Sylvia S. Mader Michael Windelspecht Chapter 20 Viruses Modified by D. Herder Copyright © The McGraw-Hill Companies, Inc. Permission required for.
Viruses Living or Not ???????. Characteristics of Viruses Among the smallest biological particles that are capable of causing diseases in living organisms.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings I. Discovery Tobacco mosaic disease - stunts growth.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses lead “a kind of borrowed life” between.
Genetics of Viruses.
Ch. 10 Molecular Biology of the Gene –
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Fig µm Chapter 19. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter.
Fig µm Chapter 19. Fig (a) The 1918 flu pandemic (b) Influenza A H5N1 virus (c) Vaccinating ducks 0.5 µm.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
 Viruses infect organisms by –binding to receptors on a host’s target cell, –injecting viral genetic material into the cell, and –hijacking the cell’s.
Bio 1010 Dr. Bonnie A. Bain 1.
© 2014 Pearson Education, Inc. This week  2/8 – Viruses 17.1 and 17.2  2/9 Viruses 17.2 and 17.3 (Retroviruses, vaccines, some data)  2/10 Biotechnology.
Fig µm Chapter 19 - Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses.
Chapter 19.  Non-living ◦ Non-cellular ◦ Cannot grow or reproduce on its own ◦ No metabolism  Cause disease ◦ AIDS, colds, flu, measles, mono  Cause.
Viral Replication EK 3C3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
6/22/2016SB3D1 Viruses. Students will derive the relationship between single-celled and multi-celled organisms and the increasing complexity of systems.
Viral and Bacterial Genetics Chapter 18. Overview Comparison Figure  m.
Viruses. Tiny 1/2 to 1/100 the size of smallest bacterium Nonliving Do not fulfill the criteria for life Do not carry out respiration, grow or move Can.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Biotechnology Part 1 Genetics of Viruses
Chapter Viruses In 1883, A. Mayer discovered that the sap extracted from tobacco plants infected with tobacco mosaic disease.
Chapter 19: Viruses.
Viruses and Bacteria Chapter 17 & 24
Fig Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Chapter 19 Viruses.
The Genetics of Viruses
Chapter 19 Viruses.
Viruses.
Chapter 19 Viruses.
Viruses.
Chapter 19 Viruses VIRUS Entry and uncoating DNA Capsid Transcription
Viruses.
Chapter 15 Viruses, Viral Life Cycles, Retroviruses.
Viruses Chapter 19.
Biotechnology Part 1 Genetics of Viruses
Fig Chapter 19: VIRUS Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Viruses
Biotechnology Part 1 Genetics of Viruses
Viruses.
Presentation transcript:

BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor From PowerPoint ® Lectures for Biology: Concepts & Connections CHAPTER 10 Molecular Biology of the Gene Modules – 10.22

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings VIRUSES: GENES IN PACKAGES Viral DNA may become part of the host chromosome Phage New phage DNA and proteins are synthesized Phage DNA inserts into the bacterial chromosome by recombination Attaches to cell Phage DNA Bacterial chromosome Phage injects DNA Occasionally a prophage may leave the bacterial chromosome Many cell divisions Lysogenic bacterium reproduces normally, replicating the prophage at each cell division Prophage Phage DNA circularizes LYSOGENIC CYCLE Cell lyses, releasing phages Phages assemble LYTIC CYCLE OR

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Many viruses have RNA, rather than DNA, as their genetic material –Example: flu viruses Connection: Many viruses cause disease in animals Figure 10.18A Membranous envelope RNA Protein coat Glycoprotein spike

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Some animal viruses steal a bit of the host cell’s membrane Figure 10.18B VIRUS Glycoprotein spike Protein coat Envelope Viral RNA (genome) 1 Plasma membrane of host cell Entry 2 Uncoating Viral RNA (genome) 3 RNA synthesis by viral enzyme 4 Protein synthesis 5 RNA synthesis (other strand) mRNA New viral protein New viral proteins 6 Assembly 7 Exit Template New viral genome

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Most plant viruses have RNA –Example: tobacco mosaic disease Connection: Plant viruses are serious agricultural pests Figure ProteinRNA

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The deadly Ebola virus causes hemorrhagic fever –Each virus is an enveloped thread of protein-coated RNA Hantavirus is another enveloped RNA virus Connection: Emerging viruses threaten human health Figure 10.20A, B

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings HIV is a retrovirus The AIDS virus makes DNA on an RNA template Figure 10.21A Envelope Glycoprotein Protein coat RNA (two identical strands) Reverse transcriptase

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Inside a cell, HIV uses its RNA as a template for making DNA to insert into the host chromosome Figure 10.21B Viral RNA DNA strand Double- stranded DNA Viral RNA and proteins CYTOPLASM NUCLEUS Chromosomal DNA Provirus DNA RNA

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Virus studies help establish molecular genetics Molecular genetics helps us understand viruses –such as HIV, seen here attacking a white blood cell Virus research and molecular genetics are intertwined Figure 10.22