1 A new identity based proxy signature scheme Source: Lecture Notes In Computer Science Author: Chunxiang Gu and Yuefei Zhu Presenter: 林志鴻
2 Outline Introduction Preliminaries The Proposed Scheme Efficiency Analysis Conclusion
3 Introduction 1.Full delegation 2.Partial delegation 3.Delegation by warrant 4.Partial delegation with warrant Alice Bob 1.SK of Alice 2.PPK 3.delegation
4 Outline Introduction Preliminaries The Proposed Scheme Efficiency Analysis Conclusion
5 Preliminaries Bilinear Pairing k-BDHI problem
6 Bilinear Pairing e : G 1 × G 1 → G 2 Bilinearity Non-degeneracy Computability
7 k-BDHI problem BDHI ︰ Bilinear Di ffi e-Hellman Inverse k-BDHI problem ︰ 給定 (P,aP,a 2 P,...a k P) ∈ ( G 1 * ) k+1 ,輸出 令一演算法 A 解此問題的機率為 ε
8 Outline Introduction Preliminaries The Proposed Scheme Efficiency Analysis Conclusion
9 Proposed Scheme Steup Extract Delegate Dverify PKgen PSign PVerify ID
10 Proposed Scheme (cont.) Steup : 設定 k 為安全參數 Ω = G 1 and G 2 ( 由 P 產生 prime order q ) e : G 1 × G 1 → G 2 P s = sP, P ss = s 2 P, g = e(P,P) g s =e(P s,P) 選擇二個 hash functions H 1 : {0, 1} ∗ → Z q * H 2 : {0, 1} ∗ × G 1 → Z q
11 Proposed Scheme (cont.) Extract : 給一使用者 ID X ∈ Z ∗ q, 計算 D X =(H 1 (ID X )+s) -1 P Delegate : A 授權給 B 1. 隨機選取 x ∈ Z ∗ q 2. 計算 q B =H 1 (ID B ), r A =g s x . g qBx, h A =H 2 (m ω, r A ), V A =(x+h A )D A 3. W A→B =(m ω, r A, V A ) DVerify : B 驗證 計算 h A =H 2 (m ω, r A ), q A =H 1 (ID A ), q B =H 1 (ID B ) 驗證等式 e((q A +q B )P s +q A q B P+P ss,V A )=r A . g s hA . g qBhA g = e(P,P) g S =e(P s,P) P S =sP P SS =s 2 P
12 Proposed Scheme (cont.) PKGen : B 接受了 W A→B =(m ω, r A, V A ) 計算代簽金鑰 D P =h A . D B - V A PSign : 代簽者預先計算 ζ= g hA(qA-qB) /r A, q A =H 1 (ID A ), q B =H 1 (ID B ),r A 從 W A→B 取得 隨機選取 y ∈ Z ∗ q 計算 r P =ζ y, h P =H 2 (m, r p ), V P =(y+h P )D P (m, τ)=(m, r P, V P, m ω, r A ) 為完成之簽章 r A =g s x . g qBx h A =H 2 (m ω, r A ) V A =(x+h A )D A D X =(H 1 (ID X )+s) -1 P
13 Proposed Scheme (cont.) PVerify: 對簽章 (m, r P, V P, m ω, r A ) 接收者先驗證授權 計算 h P =H 2 (m, r P ), q A =H 1 (ID A ), q B =H 1 (ID B ) 驗證等式 ID: 從 m ω 中可獲得代簽者 ID B 的身份 h P =H 2 (m, r p ), P S =sP V P =(y+h P )D P, P SS =s 2 P r A =g s x . g qBx h A =H 2 (m ω, r A )
14 Outline Introduction Preliminaries The Proposed Scheme Efficiency Analysis Conclusion
15 Efficiency Analysis SchemeDelgateDVerifyPKgenPSignPVerify (a) Zhang-Kim’s scheme 2M +1E2e +1E +1H1M2M +1E2e +2E +2H (b)this paper’s scheme 1M +2E1e +2M +2E1M1M +1E1e +2M +2E M: 乘法 E: 指數運算 H :hash e:pairing
16 Outline Introduction Preliminaries The Proposed Scheme Efficiency Analysis Conclusion
17 Conclusion 雖然 pairing 的計算效率已加強但仍為一個效 能的重擔而本篇的方法在驗證時只需要一個 pairing 故較為有效率 本篇所提出的方法之安全建立於在 random oracle model 中的 k-BDHI problem 困難假設