Operations Management

Slides:



Advertisements
Similar presentations
Stochastic Inventory Modeling
Advertisements

Continuous Review Systems in Inventory Management Talia Gruber Marriott School November 2011.
Inventory Management for Independent Demand Chapter 12, Part 2.
Inventory Control Chapter 17 2.
12 Inventory Management.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 6-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 6 Inventory.
12 Inventory Management PowerPoint presentation to accompany
12 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 12 Inventory Management PowerPoint presentation to accompany Heizer and Render Operations.
12 Inventory Management.
Inventory Management Chapter 16.
Chapter 12 Inventory Management
Operations Management
Inventory Management A Presentation by R.K.Agarwal, Manager (Finance), PFC.
Inventory models Nur Aini Masruroh. Outline  Introduction  Deterministic model  Probabilistic model.
Operations Management
Operations Management
© 2006 Prentice Hall, Inc.12 – 1 Operations Management Chapter 12 – Inventory Management © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany.
© 2008 Prentice Hall, Inc.12 – 1 Operations Management Chapter 12 – Inventory Management PowerPoint presentation to accompany Heizer/Render Principles.
Operations Management Inventory Management Chapter 12 - Part 2
Class 22: Chapter 14: Inventory Planning Independent Demand Case Agenda for Class 22 –Hand Out and explain Diary 2 Packet –Discuss revised course schedule.
11 Inventory Management CHAPTER
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Inventory Management Operations Management Chapter 13 Roberta.
© 2000 by Prentice-Hall Inc Russell/Taylor Oper Mgt 3/e Chapter 12 Inventory Management.
(a) : If average demand per day is 20 units and lead time is 10 days. Assuming zero safety stock. ss=0, compute ROP? (b): If average demand per day is.
EOQ: How much to order; ROP: When to order Re-Order Point (ROP) in periodic inventory system is the start of the period. Where is ROP in a perpetual system?
CHAPTER 7 Managing Inventories
A) If average demand per day is 20 units and lead time is 10 days. Assuming zero safety stock. ss=0, compute ROP. b) If average demand per day is 20 units.
12 Inventory Management PowerPoint presentation to accompany
Independent Demand Inventory Management
CHAPTER 4 INVENTORY MANAGEMENT
When to re-order with EOQ Ordering
Economic Order Quantity The economic order quantity (EOQ) is the fixed order quantity (Q) that minimizes the total annual costs of placing orders and holding.
Independent Demand Inventory Planning CHAPTER FOURTEEN McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
12 - 1© 2014 Pearson Education, Inc. Inventory Management PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
Inventory Management. Learning Objectives  Define the term inventory and list the major reasons for holding inventories; and list the main requirements.
12 – 1 Inventory Management © 2006 Prentice Hall, Inc.
Budi Harsanto Dept. of Management & Business, Faculty of Economics, Universitas Padjadjaran Inventory Management.
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 19 1.
Chapter 12 : Inventory Management Outline  The Importance of Inventory  Functions of Inventory  Types of Inventory.
12 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 12 Inventory Management PowerPoint presentation to accompany Heizer and Render Operations.
12 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Inventory Management 12.
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
Lecture 26 Order Quantities (Revisited)
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 18 1.
12 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 12 Inventory Management PowerPoint presentation to accompany Heizer and Render Operations.
Inventory Management for Independent Demand Chapter 12.
Time Inventory Demand During Lead Time. LT ROP when demand during lead time is fixed.
12 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Inventory Management 12 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 12 Inventory Management.
12 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Inventory Management 12 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Managing Inventory PowerPoint presentation to accompany Heizer and Render Operations Management, Global Edition, Eleventh Edition Principles of.
PENGENDALIAN PERSEDIAAN (Bagian 2)
12 - 1© 2014 Pearson Education, Inc. Inventory Management PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
Inventory Management.  Global Company Profile: Amazon.com  The Importance of Inventory  Functions of Inventory  Types of Inventory.
12 Inventory Management Homework; 3, 22, 28ab, 31, Add1, Add2, Add3.
Operations Management
Inventory Models (II) under SC environment
12 Inventory Management PowerPoint presentation to accompany
Lecture 24 Order Quantities (Continued)
INVENTORY MANAGEMENT By : Dr. Suyanto, SE, MM, M.Ak
Operations Management
Inventory Management EOQ Model ROP-Reorder Point Safety Stock
Operations Management
Operations Management
Operations Management
Lecture 9 Inventory Management.
Managing Flow Variability: Safety Inventory
Chapter 10 Inventory Management
12 Inventory Management PowerPoint presentation to accompany
Presentation transcript:

Operations Management Chapter 12 – Inventory Management PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 6e Operations Management, 8e © 2006 Prentice Hall, Inc.

Probabilistic Demand Inventory level Time Figure 12.8 Safety stock 16.5 units ROP  Place order Inventory level Time Minimum demand during lead time Maximum demand during lead time Mean demand during lead time ROP = 350 + safety stock of 16.5 = 366.5 Receive order Lead time Normal distribution probability of demand during lead time Expected demand during lead time (350 kits) Figure 12.8

Probabilistic Demand Probability of no stockout 95% of the time Mean demand 350 Risk of a stockout (5% of area of normal curve) ROP = ? kits Quantity Safety stock Number of standard deviations z

Probabilistic Demand Use prescribed service levels to set safety stock when the cost of stockouts cannot be determined ROP = demand during lead time + Zsdlt where Z = number of standard deviations sdlt = standard deviation of demand during lead time

Probabilistic Example Average demand = m = 350 kits Standard deviation of demand during lead time = sdlt = 10 kits 5% stockout policy (service level = 95%) Using Appendix I, for an area under the curve of 95%, the Z = 1.65 Safety stock = Zsdlt = 1.65(10) = 16.5 kits Reorder point = expected demand during lead time + safety stock = 350 kits + 16.5 kits of safety stock = 366.5 or 367 kits

Other Probabilistic Models When data on demand during lead time is not available, there are other models available When demand is variable and lead time is constant When lead time is variable and demand is constant When both demand and lead time are variable

Other Probabilistic Models Demand is variable and lead time is constant ROP = (average daily demand x lead time in days) + Zsdlt where sd = standard deviation of demand per day sdlt = sd lead time

Probabilistic Example Average daily demand (normally distributed) = 15 Standard deviation = 5 Lead time is constant at 2 days 90% service level desired Z for 90% = 1.28 From Appendix I ROP = (15 units x 2 days) + Zsdlt = 30 + 1.28(5)( 2) = 30 + 8.96 = 38.96 ≈ 39 Safety stock is about 9 units

Other Probabilistic Models Lead time is variable and demand is constant ROP = (daily demand x average lead time in days) = Z x (daily demand) x slt where slt = standard deviation of lead time in days

Probabilistic Example Z for 98% = 2.055 From Appendix I Daily demand (constant) = 10 Average lead time = 6 days Standard deviation of lead time = slt = 3 98% service level desired ROP = (10 units x 6 days) + 2.055(10 units)(3) = 60 + 61.55 = 121.65 Reorder point is about 122 units

Other Probabilistic Models Both demand and lead time are variable ROP = (average daily demand x average lead time) + Zsdlt where sd = standard deviation of demand per day slt = standard deviation of lead time in days sdlt = (average lead time x sd2) + (average daily demand) 2slt2

Probabilistic Example Average daily demand (normally distributed) = 150 Standard deviation = sd = 16 Average lead time 5 days (normally distributed) Standard deviation = slt = 1 day 95% service level desired Z for 95% = 1.65 From Appendix I ROP = (150 packs x 5 days) + 1.65sdlt = (150 x 5) + 1.65 (5 days x 162) + (1502 x 12) = 750 + 1.65(154) = 1,004 packs

Fixed-Period (P) Systems Orders placed at the end of a fixed period Inventory counted only at end of period Order brings inventory up to target level Only relevant costs are ordering and holding Lead times are known and constant Items are independent from one another

Fixed-Period (P) Systems Target maximum (T) On-hand inventory Time Q1 Q2 Q3 Q4 P P Figure 12.9

Fixed-Period (P) Example 3 jackets are back ordered No jackets are in stock It is time to place an order Target value = 50 Order amount (Q) = Target (T) - On-hand inventory - Earlier orders not yet received + Back orders Q = 50 - 0 - 0 + 3 = 53 jackets

Fixed-Period Systems Inventory is only counted at each review period May be scheduled at convenient times Appropriate in routine situations May result in stockouts between periods May require increased safety stock