Statistical Relational Learning Pedro Domingos Dept. of Computer Science & Eng. University of Washington.

Slides:



Advertisements
Similar presentations
Online Max-Margin Weight Learning with Markov Logic Networks Tuyen N. Huynh and Raymond J. Mooney Machine Learning Group Department of Computer Science.
Advertisements

Joint Inference in Information Extraction Hoifung Poon Dept. Computer Science & Eng. University of Washington (Joint work with Pedro Domingos)
Markov Networks Alan Ritter.
Discriminative Training of Markov Logic Networks
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Discriminative Structure and Parameter.
Online Max-Margin Weight Learning for Markov Logic Networks Tuyen N. Huynh and Raymond J. Mooney Machine Learning Group Department of Computer Science.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 March, 25, 2015 Slide source: from Pedro Domingos UW.
Exact Inference in Bayes Nets
Markov Logic Networks: Exploring their Application to Social Network Analysis Parag Singla Dept. of Computer Science and Engineering Indian Institute of.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis Lecture)
Markov Logic Networks Instructor: Pedro Domingos.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis)
Markov Logic: Combining Logic and Probability Parag Singla Dept. of Computer Science & Engineering Indian Institute of Technology Delhi.
Review Markov Logic Networks Mathew Richardson Pedro Domingos Xinran(Sean) Luo, u
Markov Networks.
Efficient Weight Learning for Markov Logic Networks Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Jesse Davis, Stanley Kok,
Markov Logic: A Unifying Framework for Statistical Relational Learning Pedro Domingos Matthew Richardson
Markov Logic Networks Hao Wu Mariyam Khalid. Motivation.
Speaker:Benedict Fehringer Seminar:Probabilistic Models for Information Extraction by Dr. Martin Theobald and Maximilian Dylla Based on Richards, M., and.
School of Computing Science Simon Fraser University Vancouver, Canada.
GS 540 week 6. HMM basics Given a sequence, and state parameters: – Each possible path through the states has a certain probability of emitting the sequence.
CSE 574 – Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
CSE 574: Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
Inference. Overview The MC-SAT algorithm Knowledge-based model construction Lazy inference Lifted inference.
Recursive Random Fields Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Stanley Kok, Daniel Lowd,
Relational Models. CSE 515 in One Slide We will learn to: Put probability distributions on everything Learn them from data Do inference with them.
Markov Logic Networks: A Unified Approach To Language Processing Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with.
Markov Logic: A Simple and Powerful Unification Of Logic and Probability Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
Learning, Logic, and Probability: A Unified View Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Stanley Kok, Matt.
Today Logistic Regression Decision Trees Redux Graphical Models
1 Learning the Structure of Markov Logic Networks Stanley Kok & Pedro Domingos Dept. of Computer Science and Eng. University of Washington.
Statistical Relational Learning Pedro Domingos Dept. Computer Science & Eng. University of Washington.
Pedro Domingos Dept. of Computer Science & Eng.
Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields Yong-Joong Kim Dept. of Computer Science Yonsei.
Markov Logic Parag Singla Dept. of Computer Science University of Texas, Austin.
Markov Logic: A Unifying Language for Information and Knowledge Management Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
Machine Learning For the Web: A Unified View Pedro Domingos Dept. of Computer Science & Eng. University of Washington Includes joint work with Stanley.
Undirected Models: Markov Networks David Page, Fall 2009 CS 731: Advanced Methods in Artificial Intelligence, with Biomedical Applications.
Markov Logic And other SRL Approaches
Statistical Modeling Of Relational Data Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Markov Random Fields Probabilistic Models for Images
Markov Logic and Deep Networks Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Markov Logic Networks Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Matt Richardson)
First-Order Logic and Inductive Logic Programming.
1 Markov Logic Stanley Kok Dept. of Computer Science & Eng. University of Washington Joint work with Pedro Domingos, Daniel Lowd, Hoifung Poon, Matt Richardson,
CPSC 322, Lecture 31Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 33 Nov, 25, 2015 Slide source: from Pedro Domingos UW & Markov.
Exact Inference in Bayes Nets. Notation U: set of nodes in a graph X i : random variable associated with node i π i : parents of node i Joint probability:
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 Nov, 23, 2015 Slide source: from Pedro Domingos UW.
Markov Logic Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Happy Mittal (Joint work with Prasoon Goyal, Parag Singla and Vibhav Gogate) IIT Delhi New Rules for Domain Independent Lifted.
Discriminative Training and Machine Learning Approaches Machine Learning Lab, Dept. of CSIE, NCKU Chih-Pin Liao.
Markov Logic: A Representation Language for Natural Language Semantics Pedro Domingos Dept. Computer Science & Eng. University of Washington (Based on.
1 Relational Factor Graphs Lin Liao Joint work with Dieter Fox.
Progress Report ekker. Problem Definition In cases such as object recognition, we can not include all possible objects for training. So transfer learning.
First Order Representations and Learning coming up later: scalability!
Scalable Statistical Relational Learning for NLP William Y. Wang William W. Cohen Machine Learning Dept and Language Technologies Inst. joint work with:
An Introduction to Markov Logic Networks in Knowledge Bases
Knowledge Discovery, Machine Learning, and Social Mining
Markov Logic Networks for NLP CSCI-GA.2591
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 29
Logic for Artificial Intelligence
Markov Networks.
Learning Markov Networks
Expectation-Maximization & Belief Propagation
Administrivia What: LTI Seminar When: Friday Oct 30, 2009, 2:00pm - 3:00pm Where: 1305 NSH Faculty Host: Noah Smith Title: SeerSuite: Enterprise Search.
Mostly pilfered from Pedro’s slides
Markov Networks.
Presentation transcript:

Statistical Relational Learning Pedro Domingos Dept. of Computer Science & Eng. University of Washington

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Motivation Most learners assume i.i.d. data (independent and identically distributed) One type of object Objects have no relation to each other Real applications: dependent, variously distributed data Multiple types of objects Relations between objects

Examples Web search Information extraction Natural language processing Perception Medical diagnosis Computational biology Social networks Ubiquitous computing Etc.

Costs and Benefits of SRL Benefits Better predictive accuracy Better understanding of domains Growth path for machine learning Costs Learning is much harder Inference becomes a crucial issue Greater complexity for user

Goal and Progress Goal: Learn from non-i.i.d. data as easily as from i.i.d. data Progress to date Burgeoning research area We’re “close enough” to goal Open-source software available Lots of research questions (old and new)

Plan We have the elements: Probability for handling uncertainty Logic for representing types, relations, and complex dependencies between them Learning and inference algorithms for each Figure out how to put them together Tremendous leverage on a wide range of applications

Disclaimers Not a complete survey of statistical relational learning Or of foundational areas Focus is practical, not theoretical Assumes basic background in logic, probability and statistics, etc. Please ask questions Tutorial and examples available at alchemy.cs.washington.edu

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Markov Networks Undirected graphical models Cancer CoughAsthma Smoking Potential functions defined over cliques SmokingCancer Ф(S,C) False 4.5 FalseTrue 4.5 TrueFalse 2.7 True 4.5

Markov Networks Undirected graphical models Log-linear model: Weight of Feature iFeature i Cancer CoughAsthma Smoking

First-Order Logic Constants, variables, functions, predicates E.g.: Anna, X, mother_of(X), friends(X, Y) Grounding: Replace all variables by constants E.g.: friends (Anna, Bob) World (model, interpretation): Assignment of truth values to all ground predicates

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Representations RepresentationLogical Language Probabilistic Language Knowledge-based model construction Horn clausesBayes nets Stochastic logic programs Horn clausesPCFGs Probabilistic relational models Frame systemsBayes nets Relational Markov networks SQL queriesMarkov nets Bayesian logicFirst-orderBayes nets Markov logicFirst-order logicMarkov nets

Markov Logic Most developed approach to date Many other approaches can be viewed as special cases Used in rest of this tutorial

Markov Logic: Intuition A logical KB is a set of hard constraints on the set of possible worlds Let’s make them soft constraints: When a world violates a formula, It becomes less probable, not impossible Give each formula a weight (Higher weight  Stronger constraint)

Markov Logic: Definition A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic w is a real number Together with a set of constants, it defines a Markov network with One node for each grounding of each predicate in the MLN One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Smokes(B) Cancer(B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Markov Logic Networks MLN is template for ground Markov nets Probability of a world x : Typed variables and constants greatly reduce size of ground Markov net Functions, existential quantifiers, etc. Infinite and continuous domains Weight of formula iNo. of true groundings of formula i in x

Relation to Statistical Models Special cases: Markov networks Markov random fields Bayesian networks Log-linear models Exponential models Max. entropy models Gibbs distributions Boltzmann machines Logistic regression Hidden Markov models Conditional random fields Obtained by making predicates zero-arity Markov logic allows objects to be interdependent (non-i.i.d.) Easy to compose models

Relation to First-Order Logic Infinite weights  First-order logic Satisfiable KB, positive weights  Satisfying assignments = Modes of distribution Markov logic allows contradictions between formulas

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Inference Goal: Compute marginal probabilities of nodes (or formulas) given evidence Approaches: Markov chain Monte Carlo Belief propagation Variational approximations Etc. Other inference tasks: Compute most likely state of world Compute actions that maximize utility Etc.

Lifted Inference We can do inference in first-order logic without grounding the KB (e.g.: resolution) Let’s do the same for inference in MLNs Group atoms and clauses into “indistinguishable” sets Do inference over those First approach: Lifted variable elimination (not practical) Here: Lifted belief propagation

Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation   ,  : Functions of edge counts Nodes (x) Features (f)

Lifted Belief Propagation Form lifted network composed of supernodes and superfeatures Supernode: Set of ground atoms that all send and receive same messages throughout BP Superfeature: Set of ground clauses that all send and receive same messages throughout BP Run belief propagation on lifted network Guaranteed to produce same results as ground BP Time and memory savings can be huge

Forming the Lifted Network 1. Form initial supernodes One per predicate and truth value (true, false, unknown) 2. Form superfeatures by doing joins of their supernodes 3. Form supernodes by projecting superfeatures down to their predicates Supernode = Groundings of a predicate with same number of projections from each superfeature 4. Repeat until convergence

Theorem There exists a unique minimal lifted network The lifted network construction algo. finds it BP on lifted network gives same result as on ground network

Representing Supernodes And Superfeatures List of tuples: Simple but inefficient Resolution-like: Use equality and inequality Form clusters of atoms and clauses

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Learning Data is a relational database Closed world assumption (if not: EM) Learning parameters (weights) Generatively Discriminatively Learning structure (formulas)

Generative Weight Learning Maximize likelihood Use gradient ascent or L-BFGS No local maxima Requires inference at each step (slow!) No. of true groundings of clause i in data Expected no. true groundings according to model

Pseudo-Likelihood Likelihood of each variable given its neighbors in the data Does not require inference at each step Consistent estimator Widely used in vision, spatial statistics, etc. But PL parameters may not work well for long inference chains

Discriminative Weight Learning Maximize conditional likelihood of query ( y ) given evidence ( x ) Optimization: Scaled conjugate gradient, diagonal Newton, etc. No. of true groundings of clause i in data Expected no. true groundings according to model

Structure Learning Generalizes feature induction in Markov nets Any inductive logic programming approach can be used, but... Goal is to induce any clauses, not just Horn Evaluation function should be likelihood Requires learning weights for each candidate Turns out not to be bottleneck Bottleneck is counting clause groundings Solution: Subsampling

Structure Learning Initial state: Unit clauses or hand-coded KB Operators: Add/remove literal, flip sign Evaluation function: Pseudo-likelihood + Structure prior Search: Beam, shortest-first, bottom-up, stochastic, etc.

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Alchemy Open-source software including: Full first-order logic syntax Generative & discriminative weight learning Structure learning Inference (marginals and most prob. states) Programming language features

AlchemyPrologBUGS Represent- ation F.O. Logic + Markov nets Horn clauses Bayes nets InferenceLifted BP, etc.Theorem proving MCMC LearningParameters & structure NoParams. UncertaintyYesNoYes RelationalYes No

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Applications Information extraction Entity resolution Link prediction Collective classification Web mining Natural language processing Computational biology Social network analysis Robot mapping Activity recognition Probabilistic Cyc CALO Etc.

Information Extraction Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Segmentation Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence. Author Title Venue

Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

State of the Art Segmentation HMM (or CRF) to assign each token to a field Entity resolution Logistic regression to predict same field/citation Transitive closure Alchemy implementation: Seven formulas

Types and Predicates token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

Types and Predicates token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue,...} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Optional

Types and Predicates Evidence token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Types and Predicates Query

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) ^ !Token(“.”,i,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Results: Segmentation on Cora

Results: Matching Venues on Cora

Overview Motivation Background Representation Inference Learning Software Applications Discussion

Summary The real world is complex and uncertain First-order logic handles complexity Probability handles uncertainty Statistical relational learning combines the two Markov logic: Most advanced approach to date Alchemy (alchemy.cs.washington.edu): Complete suite of state-of-the-art algorithms Many challenging applications now within reach We’re at an inflection point in what we can do