Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.

Slides:



Advertisements
Similar presentations
Cross Sections for Positrons Colliding with H, H 2, He Department of Physics National Tsing Hua University G.T. Chen 2007/6/12.
Advertisements

Gamma-Ray Spectra _ + The photomultiplier records the (UV) light emitted during electronic recombination in the scintillator. Therefore, the spectrum collected.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Millisecond pulsar population and related high energy phenomena 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Chapter 19: Between the Stars: Gas and Dust in Space.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
The all-sky distribution of 511 keV electron-positron annihilation emission Kn ö dlseder, J., Jean, P., Lonjou, V., et al. 2005, A&A, 441, 513.
The Mass of the Galaxy We can use the orbital velocity to deduce the mass of the Galaxy (interior to our orbit): v orb 2 =GM/R. This comes out about 10.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Gamma-ray From Annihilation of Dark Matter Particles Eiichiro Komatsu University of Texas at Austin AMS April 23, 2007 Eiichiro Komatsu University.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Lecture 4. Big bang, nucleosynthesis, the lives and deaths of stars. reading: Chapter 1.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Prospects in space-based Gamma-Ray Astronomy Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France On behalf of the European Gamma-Ray.
High-energy electrons, pulsars, and dark matter Martin Pohl.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
AS2001 Chemical Evolution of the Universe Keith Horne 315a
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
The structure of our Milky Way galaxy: a container of gas and stars arranged in various components with various properties.. Gaseous halo? ~ 6 x
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Gamma-rays, neutrinos and cosmic rays from microquasars Gustavo E. Romero (IAR – CONICET & La Plata University, Argentina)
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Collider searchIndirect Detection Direct Detection.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
THE RIDDLE OF P0SITRONS IN THE GALACTIC BULGE M.Cassé Service d’Astrophysique,CEA, Institut d’Astrophysique de Paris OUTLINE SPI /INTEGRAL.
Diffuse Emission and Unidentified Sources
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Antimatter in our Galaxy unveiled by INTEGRAL
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Antimatter in our Galaxy unveiled by INTEGRAL Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research Probing interstellar dust through X-ray spectroscopy C. Pinto *, J. S. Kaastra * †, E. Costantini *, F.
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.
Dark Matter in Galactic Gamma Rays
Composition of Stars Classify stars by their color, size, and brightness. Other properties of stars are chemical composition and mass. Color and Temperature.
High Energy emission from the Galactic Center
Gamma Ray Emission Mechanisms
Modelling of non-thermal radiation from pulsar wind nebulae
Observations: Cosmic rays
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
High Energy Astrophysics: problems and expectations
Instructor: Gregory Fleishman
Q. Daniel Wang and Cornelia Lang (U. of Massachusetts)
Presentation transcript:

Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29

Outline ► Introduction ► Positron Sources ► Interstellar Mediums in our galaxy ► Discussion and Future Work

Introduction  production positron rate ~  Positronium fraction ~  Line width ~ (Churazov et al., 2005) (Jean et al., 2006) Board line : Narrow line : (Jean et al., 2006) (J. Knodlseder et al., 2005)

Introduction ► The bulge emission is spherically symmetric and is centered on the galactic center with an extension of ∼ (FWHM) ► Total flux= (Jean et al., 2006)

Introduction ► Problems:  The production of positrons  The galactic map of the annihilation line  The propagation of the positrons between their production sites and annihilation places

Introduction ► Most the propagation of cosmic rays is consider in the system of the diffusion model. ► Diffusion equation:

Spectra of Positrons Energy Loss Charge Exchange with Mediums Radiative Combination with e - Free Annihilation with e - Positronium 2γ2γ 2γ2γ 3γ3γ Synchrotron Radiation Inverse Compton Scattering Bremsstrahlung Loss Ionization and Excitation Loss 511 keV spectrum

Positron Sources ► Positron productions processes (C. D. Dermer & R. J. Murphy, 2001)

Novae ► The dominant channels for positron production in Novae are:  13 N  13 C  18 F  18 O  22 Na  22 Ne  26 Al  26 Mg (γ:1.809 MeV)

Supernovae ► The dominant channels for positron production through hydrostatic and explosive nucleosynthesis are:  57 Ni  57 Co  57 Fe (γ:1.37 MeV;122,136keV)  56 Ni  56 Co  56 Fe (γ:150,750,812,847,1238 keV) keV)  44 Ti  44 Sc  44 Ca (γ:1.16 MeV;67.8,78.4 keV) keV)  26 Al  26 Mg (γ:1.809 MeV)

Supernovae Ia (K.-W Chan & R. E. Lingenfelter,1993)

Star-Capture by the Black Hole ► The capture of stars by Galactic black hole provides relativistic protons ► Collisions of these protons with surrounding gas result in relativistic positrons with energy E~30 MeV

Star-Capture by the Black Hole electrons positrons Electron/Positron Production Spectrum (K.S. Cheng et al. 2006)

Pulsars (X. Chi et al.,1996)

Light Dark Matter ► The dark matter particles with energy about MeV annihilate into e + e - pairs in the galactic bulge. ► Dark matter halo profile is quite uncertain.

Interstellar Mediums ► The chemical composition of ISM :  Hydrogen: 90.8%  Helium: 9.1%  Heavier elements: 0.12% (K. M. Ferriere, 2001)

Interstellar Mediums ► ISM model (McKee & Ostriker,1977)  2.4% cold phase, n=42 cm -3, T=80K  23% warm neutral phase, n=0.37 cm -3, T=8000K  23% warm ionized phase, n=0.25 cm -3,, T=8000K  52% hot phase, n=3.5*10 -3 cm -3, T= 4.5*10 5 K (N. Guessoum et al., 2005)

Interstellar Mediums ► Berezinkii et al. estimated the average value of the diffusion coefficient  ~10 27 cm 2 s -1 (K.S. Cheng et al.,2006)

Discussion and Future Work ► Study more about the spectra of positron sources ► Calculate the evolution of positrons in the galactic center region by diffusion equation

► C. Boehm et al PRL “ MeV dark matter: Has it been detected? ” “ MeV dark matter: Has it been detected? ” ► K.-W Chan & R. E. Lingenfelter 1993 ApJ “ Positrons from supernovae ” “ Positrons from supernovae ” ► X. Chi et al ApJ “ Pulasr-wind origin of cosmic-ray positrons ” “ Pulasr-wind origin of cosmic-ray positrons ” ► M. Casse et al ApJ “ Hypernovae/Gamma-ray bursts in the galactic center as possible sources of galactic positrons ” “ Hypernovae/Gamma-ray bursts in the galactic center as possible sources of galactic positrons ” ► K. S. Cheng et al ApJ “ Annihilation emission form the galactic black hole ” “ Annihilation emission form the galactic black hole ” ► C. D. Dermer and R. J. Murphy 2001 “ Annihilation radiation in the galaxy ” “ Annihilation radiation in the galaxy ” ► K. M. Ferriere 2001 Review of modern physics “ The interstellar environment of our galaxy ” “ The interstellar environment of our galaxy ” References:

► N. Guessoum et al A&A “ The live and deaths of positrons in the interstellar medium ” “ The live and deaths of positrons in the interstellar medium ” ► P. Jean et al A&A “ Spectral analysis of the galactic e + e - annihilation emission ” “ Spectral analysis of the galactic e + e - annihilation emission ” ► J. Knodlseder et al A&A “ The all-sky distribution of 511 keV electron-positron annihilation emission ” “ The all-sky distribution of 511 keV electron-positron annihilation emission ” ► P. A. Milne et al ApJ “ Positron escape from type Ia supernovae ” “ Positron escape from type Ia supernovae ”

To Be Continued …….

>>Thank You >Thank You<<

Introduction Weidenspointner et al A&A

Introduction Jean et al A&A

Introduction ► Positronium (PS):  It is the bound state of e + and e - Para-PS stateOrtho-PS state

Guessoum et al A&A

Model (II) ► Typical parameters: ► How many MSPs in this region ? P=3 ms B=3*10 8 G  Injection rate

► Dust makes no difference to the 511 keV line profile. (N. Guessoum et al., 2005)