CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Sampling Strategies.

Slides:



Advertisements
Similar presentations
NUS CS5247 Motion Planning for Car- like Robots using a Probabilistic Learning Approach --P. Svestka, M.H. Overmars. Int. J. Robotics Research, 16: ,
Advertisements

Complete Motion Planning
Probabilistic Roadmaps. The complexity of the robot’s free space is overwhelming.
PRM and Multi-Space Planning Problems : How to handle many motion planning queries? Jean-Claude Latombe Computer Science Department Stanford University.
By Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, Mark H. Overmars Emre Dirican
Visibility Graphs May Shmuel Wimer Bar-Ilan Univ., Eng. Faculty Technion, EE Faculty.
NUS CS5247 The Gaussian Sampling Strategy for Probalistic Roadmap Planners Valdrie Boor, Mark H. Overmars, A. Frank van der Stappen, 1999 Wai.
Sampling Strategies for PRMs modified from slides of T.V.N. Sri Ram.
Presented By: Aninoy Mahapatra
Probabilistic Roadmap
Probabilistic Roadmaps Sujay Bhattacharjee Carnegie Mellon University.
NUS CS5247 Randomized Kinodynamic Motion Planning with Moving Obstacles - D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Int. J. Robotics Research, 21(3): ,
Randomized Kinodynamics Motion Planning with Moving Obstacles David Hsu, Robert Kindel, Jean-Claude Latombe, Stephen Rock.
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University.
1 Last lecture  Configuration Space Free-Space and C-Space Obstacles Minkowski Sums.
David Hsu, Robert Kindel, Jean- Claude Latombe, Stephen Rock Presented by: Haomiao Huang Vijay Pradeep Randomized Kinodynamic Motion Planning with Moving.
1 On the Probabilistic Foundations of Probabilistic Roadmaps Jean-Claude Latombe Stanford University joint work with David Hsu and Hanna Kurniawati National.
“Visibility-based Probabilistic Roadmaps for Motion Planning” Siméon, Laumond, Nissoux Presentation by: Mathieu Bredif CS326A: Paper Review Winter 2004.
CS 326 A: Motion Planning Probabilistic Roadmaps Basic Techniques.
“Visibility-based Probabilistic Roadmaps for Motion Planning” Siméon, Laumond, Nissoux Presentation by: Eric Ng CS326A: Paper Review Spring 2003.
Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method Presented by: Deborah Meduna and Michael Vitus by: Saha, Latombe,
1 Probabilistic Roadmaps CS 326A: Motion Planning.
CS 326 A: Motion Planning Probabilistic Roadmaps Sampling and Connection Strategies (2/2)
1 Single Robot Motion Planning - II Liang-Jun Zhang COMP Sep 24, 2008.
1 Motion Planning (It’s all in the discretization) R&N: Chap. 25 gives some background.
On Delaying Collision Checking in PRM Planning G. Sánchez and J. Latombe presented by Niloy J. Mitra.
On Delaying Collision Checking in PRM Planning--Application to Multi-Robot Coordination Gildardo Sanchez & Jean-Claude Latombe Presented by Chris Varma.
1 On the Probabilistic Foundations of Probabilistic Roadmaps D. Hsu, J.C. Latombe, H. Kurniawati. On the Probabilistic Foundations of Probabilistic Roadmap.
1 Finding “Narrow Passages” with Probabilistic Roadmaps: The Small-Step Retraction Method Mitul Saha and Jean-Claude Latombe Research supported by NSF,
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Basic Techniques.
CS 326 A: Motion Planning Probabilistic Roadmaps Sampling and Connection Strategies.
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Primitive-Biased Sampling + Manipulation Planning.
On Delaying Collision Checking in PRM Planning Gilardo Sánchez and Jean-Claude Latombe January 2002 Presented by Randall Schuh 2003 April 23.
1 Path Planning in Expansive C-Spaces D. HsuJ. –C. LatombeR. Motwani Prepared for CS326A, Spring 2003 By Xiaoshan (Shan) Pan.
Sampling Strategies for Probabilistic Roadmaps Random Sampling for capturing the connectivity of the C-space:
NUS CS 5247 David Hsu1 Last lecture  Multiple-query PRM  Lazy PRM (single-query PRM)
CS 326 A: Motion Planning robotics.stanford.edu/~latombe/cs326/2004/index.htm Collision Detection and Distance Computation.
CS 326A: Motion Planning Kynodynamic Planning + Dealing with Moving Obstacles + Dealing with Uncertainty + Dealing with Real-Time Issues.
Path Planning in Expansive C-Spaces D. HsuJ.-C. LatombeR. Motwani CS Dept., Stanford University, 1997.
CS 326A: Motion Planning Basic Motion Planning for a Point Robot.
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University Abridged and Modified Version (D.H.)
Workspace-based Connectivity Oracle An Adaptive Sampling Strategy for PRM Planning Hanna Kurniawati and David Hsu Presented by Nicolas Lee and Stephen.
CS 326A: Motion Planning Probabilistic Roadmaps: Sampling and Connection Strategies.
CS 326 A: Motion Planning Probabilistic Roadmaps Basic Techniques.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Kavraki, Svestka, Latombe, Overmars 1996 Presented by Chris Allocco.
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Collision Detection and Distance Computation.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Lydia E. Kavraki Petr Švetka Jean-Claude Latombe Mark H. Overmars Presented.
Presentation for the course : Advanced Robotics Behdad Soleimani 9 March 2009.
© Manfred Huber Autonomous Robots Robot Path Planning.
A N E FFICIENT M OBILE R OBOT P ATH P LANNING USING H IERARCHICAL R OADMAP R EPRESENTATION I N INDOOR E NVIRONMENT Aamir Reyaz Khan NSCL.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars.
Narrow Passage Problem in PRM Amirhossein Habibian Robotic Lab, University of Tehran Advanced Robotic Presentation.
On Delaying Collision Checking in PRM Planning – Application to Multi-Robot Coordination By: Gildardo Sanchez and Jean-Claude Latombe Presented by: Michael.
Sampling-Based Planners. The complexity of the robot’s free space is overwhelming.
Tree-Growing Sample-Based Motion Planning
NUS CS5247 Using a PRM Planner to Compare Centralized and Decoupled Planning for Multi-Robot Systems By Gildardo Sánchez and Jean-Claude Latombe In Proc.
NUS CS 5247 David Hsu Sampling Narrow Passages. NUS CS 5247 David Hsu2 Narrow passages.
Filtering Sampling Strategies: Gaussian Sampling and Bridge Test Valerie Boor, Mark H. Overmars and A. Frank van der Stappen Presented by Qi-xing Huang.
Motion Planning CS121 – Winter Basic Problem Are two given points connected by a path?
Instructor Prof. Shih-Chung Kang 2008 Spring
CS 326A: Motion Planning Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe,
Artificial Intelligence Lab
Last lecture Configuration Space Free-Space and C-Space Obstacles
Non-Holonomic Motion Planning
Probabilistic Roadmap Motion Planners
Presented By: Aninoy Mahapatra
Sampling and Connection Strategies for Probabilistic Roadmaps
Path Planning using Ant Colony Optimisation
Motion Planning CS121 – Winter 2003 Motion Planning.
Configuration Space of an Articulated Robot
Presentation transcript:

CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Sampling Strategies

Two Types of Strategies  Where to sample new milestones?  Sampling strategy  Which milestones to connect?  Connection strategy  Goal: Minimize roadmap size to correctly answer motion-planning queries

PRM planners work well because, in practice, free spaces have favorable visibility properties (expansiveness). However, even when visibility properties are favorable, they are usually not uniformly favorable  Non-uniform sampling strategies can significantly speed-up PRM planners small visibility sets small lookout sets good visibility poor visibility

 But how to identify poor visibility regions? ― What is the source of information?  Robot and workspace geometry ― How to exploit it?  Workspace-guided strategies  Filtering strategies  Adaptive strategies  Deformation strategies

 Workspace-guided strategies Identify narrow passages in the workspace and map them into the configuration space  Filtering strategies Sample many configurations, find interesting patterns, and retain only promising configurations  Adaptive strategies Adjust the sampling distribution (  ) on the fly  Deformation strategies Deform the free space, e.g., to widen narrow passages

Multi- vs. Single-Query Roadmaps  Multi-query roadmaps  Pre-compute roadmap  Re-use roadmap for answering queries  The roadmap must cover the free space well  Single-query roadmaps  Compute a roadmap from scratch for each new query  Often roadmap consists of 2 trees rooted at the query configurations