SOME BASIC MPI ROUTINES With formal datatypes specified.

Slides:



Advertisements
Similar presentations
Its.unc.edu 1 Collective Communication University of North Carolina - Chapel Hill ITS - Research Computing Instructor: Mark Reed
Advertisements

MPI Collective Communications
Reference: / MPI Program Structure.
Message Passing Interface COS 597C Hanjun Kim. Princeton University Serial Computing 1k pieces puzzle Takes 10 hours.
MPI_Gatherv CISC372 Fall 2006 Andrew Toy Tom Lynch Bill Meehan.
MPI_AlltoAllv Function Outline int MPI_Alltoallv ( void *sendbuf, int *sendcnts, int *sdispls, MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int.
HPDC Spring MPI 11 CSCI-6964: High Performance Parallel & Distributed Computing (HPDC) AE 216, Mon/Thurs. 2 – 3:20 p.m Message Passing Interface.
High Performance Parallel Programming Dirk van der Knijff Advanced Research Computing Information Division.
EECC756 - Shaaban #1 lec # 7 Spring Message Passing Interface (MPI) MPI, the Message Passing Interface, is a library, and a software standard.
Using MPI - the Fundamentals University of North Carolina - Chapel Hill ITS - Research Computing Instructor: Mark Reed
Collective Communication.  Collective communication is defined as communication that involves a group of processes  More restrictive than point to point.
Message Passing Interface. Message Passing Interface (MPI) Message Passing Interface (MPI) is a specification designed for parallel applications. The.
Programming Using the Message Passing Paradigm Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel.
Distributed Systems CS Programming Models- Part II Lecture 17, Nov 2, 2011 Majd F. Sakr, Mohammad Hammoud andVinay Kolar 1.
Sahalu JunaiduICS 573: High Performance Computing6.1 Programming Using the Message Passing Paradigm Principles of Message-Passing Programming The Building.
Message Passing Programming Carl Tropper Department of Computer Science.
Parallel Programming with Java
CS 179: GPU Programming Lecture 20: Cross-system communication.
Parallel Programming Using Basic MPI Presented by Timothy H. Kaiser, Ph.D. San Diego Supercomputer Center Presented by Timothy H. Kaiser, Ph.D. San Diego.
Parallel Programming with MPI Matthew Pratola
ORNL is managed by UT-Battelle for the US Department of Energy Crash Course In Message Passing Interface Adam Simpson NCCS User Assistance.
Parallel Processing1 Parallel Processing (CS 676) Lecture 7: Message Passing using MPI * Jeremy R. Johnson *Parts of this lecture was derived from chapters.
Parallel Programming and Algorithms – MPI Collective Operations David Monismith CS599 Feb. 10, 2015 Based upon MPI: A Message-Passing Interface Standard.
2a.1 Message-Passing Computing More MPI routines: Collective routines Synchronous routines Non-blocking routines ITCS 4/5145 Parallel Computing, UNC-Charlotte,
1 Collective Communications. 2 Overview  All processes in a group participate in communication, by calling the same function with matching arguments.
PP Lab MPI programming VI. Program 1 Break up a long vector into subvectors of equal length. Distribute subvectors to processes. Let them compute the.
Parallel Programming with MPI Prof. Sivarama Dandamudi School of Computer Science Carleton University.
CS 838: Pervasive Parallelism Introduction to MPI Copyright 2005 Mark D. Hill University of Wisconsin-Madison Slides are derived from an online tutorial.
Message Passing Programming Model AMANO, Hideharu Textbook pp. 140-147.
Summary of MPI commands Luis Basurto. Large scale systems Shared Memory systems – Memory is shared among processors Distributed memory systems – Each.
MPI Introduction to MPI Commands. Basics – Send and Receive MPI is a message passing environment. The processors’ method of sharing information is NOT.
CS 420 – Design of Algorithms MPI Data Types Basic Message Passing - sends/receives.
Cluster Computing The research in heterogeneous supercomputing led to the development of: 1- high- speed system area networks and 2- portable message passing.
Distributed-Memory (Message-Passing) Paradigm FDI 2004 Track M Day 2 – Morning Session #1 C. J. Ribbens.
Parallel Programming with MPI By, Santosh K Jena..
Oct. 23, 2002Parallel Processing1 Parallel Processing (CS 730) Lecture 6: Message Passing using MPI * Jeremy R. Johnson *Parts of this lecture was derived.
MPI Jakub Yaghob. Literature and references Books Gropp W., Lusk E., Skjellum A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface,
PPC SPRING MPI 11 CSCI-4320/6340: Parllel Programming and Computing: West Hall, Tues, Friday 12-1:20 p.m. Message Passing Interface (MPI 1) Prof.
1. 2 The logical view of a machine supporting the message-passing paradigm consists of p processes, each with its own exclusive address space. The logical.
An Introduction to MPI (message passing interface)
MPI Chapter 3 More Beginning MPI. MPI Philosopy One program for all processes – Starts with init – Get my process number Process 0 is usually the “Master”
-1.1- MPI Lectured by: Nguyễn Đức Thái Prepared by: Thoại Nam.
MPI Adriano Cruz ©2003 NCE/UFRJ e Adriano Cruz NCE e IM - UFRJ Summary n References n Introduction n Point-to-point communication n Collective.
Message Passing Programming Based on MPI Collective Communication I Bora AKAYDIN
MPI Derived Data Types and Collective Communication
Message Passing Interface Using resources from
COMP7330/7336 Advanced Parallel and Distributed Computing MPI Programming: 1. Collective Operations 2. Overlapping Communication with Computation Dr. Xiao.
ITCS 4/5145 Parallel Computing, UNC-Charlotte, B
Distributed Processing with MPI International Summer School 2015 Tomsk Polytechnic University Assistant Professor Dr. Sergey Axyonov.
3/12/2013Computer Engg, IIT(BHU)1 MPI-2. POINT-TO-POINT COMMUNICATION Communication between 2 and only 2 processes. One sending and one receiving. Types:
Computer Science Department
Introduction to MPI Programming Ganesh C.N.
MPI Jakub Yaghob.
Auburn University COMP7330/7336 Advanced Parallel and Distributed Computing Message Passing Interface (cont.) Topologies.
CS4402 – Parallel Computing
Introduction to MPI Programming
Computer Science Department
Send and Receive.
Collective Communication with MPI
An Introduction to Parallel Programming with MPI
Collective Communication Operations
Send and Receive.
ITCS 4/5145 Parallel Computing, UNC-Charlotte, B
CS 5334/4390 Spring 2017 Rogelio Long
Lecture 14: Inter-process Communication
Message-Passing Computing More MPI routines: Collective routines Synchronous routines Non-blocking routines ITCS 4/5145 Parallel Computing, UNC-Charlotte,
Hardware Environment VIA cluster - 8 nodes Blade Server – 5 nodes
Message-Passing Computing Message Passing Interface (MPI)
Synchronizing Computations
Computer Science Department
Presentation transcript:

SOME BASIC MPI ROUTINES With formal datatypes specified

Preliminaries

int MPI_Init(int *argc, char **argv[]) *argc argument from main() **argv[] argument from main() Initialize MPI environment

Terminate MPI execution environment. int MPI_Finalize(void) Parameters: None.

Determine rank of process in communicator int MPI_Comm_rank(MPI_Comm comm, int *rank) Parameters: comm communicator *rank rank (returned)

Determine size of group associated with communicator int MPI_Comm_size(MPI_Comm comm, int *size) Parameters: comm communicator *size size of group (returned)

Return elapsed time from some point in past, in seconds double MPI_Wtime(void) Parameters: None.

Basic Blocking Point-to- Point Message Passing

Datatypes MPI defines various datatypes for MPI_Datatype, mostly with corresponding C datatypes, including MPI_CHARsigned char MPI_INTsigned int MPI_FLOATfloat

Send message (synchronous) int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm) Parameters: *buf send buffer count number of entries in buffer datatype data type of entries dest destination process rank tag message tag comm communicator

Send message (blocking) int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm) Parameters: *buf send buffer count number of entries in buffer datatype data type of entries dest destination process rank tag message tag comm communicator

Receive message (blocking) int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status) Parameters: *buf receive buffer (loaded) count max number of entries in buffer datatype data type of entries source source process rank tag message tag comm communicator *status status (returned)

Receive message (blocking) continued MPI_ANY_TAG in tag and MPI_ANY_SOURCE in source matches with anything. Return status is a structure with at least three members: status -> MPI_SOURCE rank of source of message status -> MPI_TAG tag of source message s tatus -> MPI_ERROR potential errors

Basic Group Routines

Barrier: Block process until all processes have called it int MPI_Barrier(MPI_Comm comm) Parameters: comm communicator

Broadcast message from root process to all processes in comm and itself. int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm) Parameters: *buf message buffer (loaded) count number of entries in buffer datatype data type of buffer root rank of root

Gather values for group of processes int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm) Parameters: *sendbuf send buffer sendcount number of send buffer elements sendtype data type of send elements *recvbuf receive buffer (loaded) recvcount number of elements each receive recvtype data type of receive elements root rank of receiving process comm communicator

Scatter a buffer from root in parts to group of processes int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm) Parameters: *sendbuf send buffer sendcount number of elements send, each process sendtype data type of elements *recvbuf receive buffer (loaded) recvcount number of recv buffer elements recvtype type of recv elements root root process rank comm communicator

Combine values on all processes to single value int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) Parameters: *sendbuf send buffer address *recvbuf receive buffer address count number of send buffer elements datatype data type of send elements op reduce operation. Several operations, including MPI_MAX Maximum MPI_MIN Minimum MPI_SUM Sum MPI_PROD Product root root process rank for result comm communicator

Bibliography Gropp, W., E. Lusk, and A. Skjellum (1999), Using MPI Portable Parallel Programming with the Message-Passing Interface, 2nd ed., MIT Press, Cambridge, Massachusetts. Gropp, W., E. Lusk, and R. Thakur (1999), Using MPI-2 Advanced Features of the Message-Passing Interface, MIT Press, Cambridge, Massachusetts. Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra (1998), MPI — The Complete Reference: Volume 1, The MPI Core, MIT Press, Cambridge, Massachusetts. Gropp, W., S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir (1998), MPI — The Complete Reference: Volume 2, The MPI-2 Extensions, MIT Press, Cambridge, Massachusetts.