Capacitors in series: Capacitors in parallel: Capacitors Consider two large metal plates which are parallel to each other and separated by a distance.

Slides:



Advertisements
Similar presentations
1 Chapter 24--Examples. 2 Problem In the figure to the left, a potential difference of 20 V is applied across points a and b. a) What is charge on each.
Advertisements

Chapter 23: Electrostatic Energy and Capacitance
LECTURE 11 Pick up reading quiz #2 lecture notes for Lecture 11 Course questionnaire Pick up reading quiz #2 lecture notes for Lecture 11 Course questionnaire.
You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates. If the charges +Q and –Q on the two plates.
© 2012 Pearson Education, Inc. The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase.
CH25.Problems Capacitance JH.
Unit 2 Day 3: Electric Energy Storage Electric potential energy stored between capacitor plates Work done to add charge to the capacitor plates Energy.
Fall 2008Physics 231Lecture 4-1 Capacitance and Dielectrics.
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Chapter 26:Capacitance and Dielectrics. Capacitors A capacitor is made up of 2 conductors carrying charges of equal magnitude and opposite sign. The Capacitance.
Objectives: 1. Define and calculate the capacitance of a capacitor. 2. Describe the factors affecting the capacitance of the capacitor. 3. Calculate the.
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
Suppose that a parallel plate capacitor is charged to 5000 volts as seen in the photograph below. The power supply is then disconnected for the following.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Capacitance Physics Department, New York City College of Technology.
A sphere of radius A has a charge Q uniformly spread throughout its volume. Find the difference in the electric potential, in other words, the voltage.
Capacitance and dielectrics(sec. 24.1) Capacitors in series and parallel (sec. 24.2) Energy storage in capacitors and electric field energy(sec. 24.3)
Capacitance and dielectrics(sec. 24.1) Capacitors in series and parallel (sec. 24.2) Energy storage in capacitors and electric field energy(sec. 24.3)
Electricity and Magnetism
1) If a 4-  F capacitor and an 8-  F capacitor are connected in parallel, which has the larger potential difference across it? Which has the larger.
Physics 1402: Lecture 7 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Capacitors Consider two large metal plates which are parallel to each other and separated by a distance small compared with their width. Area A The field.
Chapter 26 Capacitance and Dielectrics. Concept Question 1.
Example: A spherical capacitor consists of a spherical conducting shell of radius b charge –Q concentric with a smaller conducting sphere of radius a.
Capacitance & Dielectrics
Capacitance.
-Capacitors with Dielectrics -Types of Capacitors AP Physics C Mrs. Coyle.
Capacitance�and�Dielectrics
Capacitance and Dielectrics
P212c25: 1 Chapter 25: Capacitance and Dielectrics Capacitor: two conductors (separated by an insulator) usually oppositely charged a +Q b -Q V ab proportional.
Which of these configurations gives V = 0 at all points on the y-axis? 4) all of the above 5) none of the above 10. Equipotential Surfaces III 1) x +2.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
Capacitance PHY 2049 Chapter 25 Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated.
Capacitor An element that stores charge when a voltage is applied
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
1/25/2008 J.Velkovska 1 PHYS117B: Lecture 8 More about electric potential  Equipotential lines  Relation between E and V Capacitance.
The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to –2Q,
CHAPTER-25 Capacitance. Ch 25-2 Capacitance  Capacitor: Two electrically isolated conductors forms a capacitor.  Common example: parallel- plate capacitor.
Capacitance Physics Montwood High School R. Casao.
Electricity and Magnetism Review 2: Units 7-11 Mechanics Review 2, Slide 1.
Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Today's Concept: Conductors and Capacitance How are charges distributed on conductors? What is capacitance.
Physics 212 Lecture 8, Slide 1 Physics 212 Lecture 8 Today's Concept: Capacitors How does a capacitor behave in a circuit? More circuit examples.
Physics 2102 Jonathan Dowling Physics 2102 Lecture 8 Capacitors II.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
A sphere of radius A has a charge Q uniformly spread throughout its volume. Find the difference in the electric potential, in other words, the voltage.
Equipotential Surfaces An equipotential surface is a surface on which the electric potential V is the same at every point. Because potential energy does.
Capacitors Physics 1161: Lecture 05 Textbook Sections 20-5 – 20-6.
Halliday/Resnick/Walker Fundamentals of Physics
Physics 102: Lecture 4, Slide 1 Capacitors (& batteries) Physics 102: Lecture 04.
Consider a charged capacitor whose plates are separated by air (dielectric constant 1.00 ). The capacitor is electrically isolated from its surroundings.
Capacitance (II) Capacitors in circuits Electrostatic potential energy.
Objectives: 1. Define and calculate the capacitance of a capacitor. 2. Describe the factors affecting the capacitance of the capacitor. 3. Calculate the.
Objectives: 1. Define and calculate the capacitance of a capacitor. 2. Describe the factors affecting the capacitance of the capacitor. 3. Calculate the.

6. Capacitance and capacitors 6.1 Capacitors +Q -Q +Q -Q +Q 6.2 Capacitance [C]= 1 F = 1 C / V Definition:Units: Symbol: C is independent from: Q and ΔV.
Physics 102: Lecture 4, Slide 1 Capacitors! Physics 102: Lecture 04 Today’s lecture will cover Textbook Sections , , 6.
Electrostatic Energy and Capacitors. Capacitance An indication as to how easy it is to accumulate charge on an object. Ex. What is the capacitance of.
Chapter 24: Capacitance and Dielectrics
Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated conductors.
Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated conductors.
Capacitance (Chapter 26)
Introduction to Capacitance
Physics 014 Capacitance.
Figure 25.2 (a) When the electric field E is directed downward, point B is at a lower electric potential than point A. When a positive test charge moves.
Chapter 25 Capacitance-II
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The capacitance.
Capacitance and Capacitors
Electricity and Magnetism
Dielectrics Experiment: Place dielectrics between
Presentation transcript:

Capacitors in series: Capacitors in parallel:

Capacitors Consider two large metal plates which are parallel to each other and separated by a distance small compared with their width. Area A The field between plates is L

The capacitance is:

a b C1C1 C3C3 C5C5 C4C4 C2C2 C 1 =C 5 =8.4  F and C 2 =C 3 =C 4 =4.2  F The applied potential is V ab =220 V. a)What is the equivalent capacitance of the network between points a and b? b) Calculate the charge on each capacitor and the potential difference across each capacitor.

A BC D

Electric field near the surface of a conductor

Capacitors in series: Capacitors in parallel:

Most capacitors have a non-conducting material, or dielectric, between their conducting plates. When we insert an uncharged sheet of dielectric between the plates, experiments show that the potential difference decreases to a smaller value V (we did this experiment last class!). When the space between plates is completely filled by the dielectric, the ratio is called dielectric constant.

Moore’s Law (1965): every 2 years the number of transistors on a chip is doubled Smaller, Denser, Cheaper