X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US I: Liquid Metal/Vapor Interfaces.

Slides:



Advertisements
Similar presentations
Wetting When It Isn’t Simple! P.S. Pershan, Harvard Univ. Simple Wetting Van der Waals (T>T boiling ) D.
Advertisements

Slide: 1 HSC17: Dynamical properties investigated by neutrons and synchrotron X-rays, 16 Sept
Influence of Substrate Surface Orientation on the Structure of Ti Thin Films Grown on Al Single- Crystal Surfaces at Room Temperature Richard J. Smith.
X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US X-ray Liquid Surface: Experimental.
9th Int. Conf on Surf. X-ray and Neutron Scan (Taiwan, Jul.’06). 1 Surface Structure and Chemical Composition of Liquid Metal Alloys P. S. Pershan HSEAS.
Wetting of Liquid Crystal Surfaces and Induced Smectic Layering at the Nematic-Liquid Interface* Masafumi Fukuto, 1 Oleg Gang, 2 Kyle J. Alvine, 3 Benjamin.
The Structure Liquid Surfaces P. S. Pershan DEAS & Dept. Of Physics, Harvard Univ. Cambridge, MA DMR ; NSF ; DE-FG02-88-ER45379 O.
Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy
DPG Tagung, O27, Phasenübergänge, Berlin 2005 Surface freezing and surface phase transition studied at the liquid eutectic AuSi surface 1. Surface layering.
Alloy Formation at the Co-Al Interface for Thin Co Films Deposited on Al(001) and Al(110) Surfaces at Room Temperature* N.R. Shivaparan, M.A. Teter, and.
Formation of 2D crystalline surface phases on liquid Au-based metallic glass forming alloys S. Mechler, P. S. Pershan, S. E. Stoltz, S. Sellner Department.
Alloy Formation at the Epitaxial Interface for Ag Films Deposited on Al(001) and Al(110) Surfaces at Room Temperature* N.R. Shivaparan, M.A. Teter, and.
System and experimental setup Studied a wetting film of binary mixture MC/PFMC on Si(100), in equilibrium with the binary vapor and bulk liquid mixture.
Liquid Metal Surfaces P. S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, USA Colleagues Pershan/CARS Balagurusamy, V. S. K. Berman, E.
The Structure Liquid Surfaces P. S. Pershan DEAS & Dept. Of Physics, Harvard Univ. Cambridge, MA DMR ; NSF ; DE-FG02-88-ER45379 O.
Buried Interfaces Mark Schlossman University of Illinois at Chicago Interface scattering between solids and liquids: S/S, S/L, L/L A few examples of studies.
Non-Harvard Collaborators: Ben Ocko, Elaine DiMasi, Olaf Magnussen Physics Dept. Brookhaven National Laboratory Moshe Deutsch: Bar Ilan University, Israel.
Liquid Metal Surfaces P. S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, USA Colleagues Pershan/ESRF Balagurusamy, V. S. K. Berman, E.
Thin films II Kinematic theory - works OK for mosaic crystals & other imperfect matls Doesn't work for many, more complicated films Kinematic theory -
SEMICONDUCTORS Semiconductors Semiconductor devices
Chapter 10 Liquids and Solids. Chapter 10 Table of Contents Copyright © Cengage Learning. All rights reserved Intermolecular Forces 10.2 The Liquid.
Intermolecular Forces and
Intermolecular Forces and Liquids and Solids Chapter 14.
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Intermolecular Forces and
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION Chapter 10 Liquids and Solids.
Element Groups (Families)
Why bother ? How to bother ? Was it worth bothering ? Should we keep bothering ? OUTLINE ( motivation & history ) ( experimental) ( some of the results)
Thermodynamics Basic Review of Byeong-Joo Lee Microstructure Evolution
Daniel Wamwangi School of Physics
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Tetra Point Wetting at the Free Surface of a Binary Liquid Metal Patrick Huber, Oleg Shpyrko, Peter Pershan, Holger Tostmann*, Elaine DiMasi**, Ben Ocko**,
SANS at interfaces and in bulk systems under shear Henrich Frielinghaus JCNS c/o TUM, Garching.
1 Investigation of Optical Properties n, k … index of refraction and damping  1,  2 … polarization and absorption Problems: The penetration depth of.
Intermolecular Forces and Liquids and Solids Chapter 10.
EEW508 Structure of Surfaces Surface structure Rice terrace.
Surface and Bulk Fluctuations of the Lennard-Jones Clusrers D. I. Zhukhovitskii.
Intermolecular Forces and Liquids and Solids Chapter 12 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Calculations of phase diagrams using Thermo-Calc software package Equilibrium calculation using the Gibbs energy minimisation 1. The Gibbs energy for a.
 Phase behavior of polymer solutions and polymer blends in confinement Juan C. Burgos Juan C. Burgos Texas A&M University College Station, TX
Practical aspects of thermodynamic analysis  Dynamic methods of phase equilibrium studies – DTA, HF-DSC a.Unary system; b. Binary and ternary systems.
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint.
The Muppet’s Guide to: The Structure and Dynamics of Solids Thomas Hase Room MAS4.02
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Chap 10 Liquids & Solids. Key terms Molecules – atoms joined by covalent bonds (molecular compounds) Condensed states – solid and liquid Intramolecular.
Inelastic Scattering: Neutrons vs X-rays Stephen Shapiro Condensed Matter Physics/Materials Science February 7,2008.
MD (here)MD*EXP (kcal/mole)  (D) D (cm/s) 298K ENHANCED H ION TRANSPORT AND HYDRONIUM ION FORMATION T. S. Mahadevan.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Sep – 18, 2013.
Thermodynamic data A tutorial course Session 6: Modelling Surface Tension Alan Dinsdale “Thermochemistry of Materials” SRC.
10.5 Liquid and Solid Standard States
The Muppet’s Guide to: The Structure and Dynamics of Solids Single Crystal Diffraction.
 Course number: 527 M1700  Designation: Graduate course  Instructor: Chao-Sung Lin, MSE Dept., (office), (lab)  Office hours: 2 ~
Topic Name : Solid solution
KS4 Chemistry Metallic Bonding.
Interaction between Photons and Electrons
SEMICONDUCTORS Semiconductors Semiconductor devices
KS4 Chemistry Metallic Bonding.
Ionic and Metallic Bonding
Phase Diagrams for Surface Alloys
States of Matter Solids Liquids Gases.
Phase diagrams by thermodynamic calculations
Molecular Dynamics Study on Deposition Behaviors of Au Nanocluster on Substrates of Different Orientation S.-C. Leea, K.-R. Leea, K.-H. Leea, J.-G. Leea,
P .K CHOURASIA PRESENTS SURFACE CHEMISTRY.
Surface Chemistry the study of physical and chemical phenomena that occur at the interface of two phases, including solid-liquid interfaces, solid-gas.
II. Forces of Attraction
Intermolecular Forces and
Growth Behavior of Co on Al(001) substrate
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
§8.4 Surface adsorption of solution
Presentation transcript:

X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US I: Liquid Metal/Vapor Interfaces II: Examples from experiments done by our group and others. III: Open questions on surface freezing of liquid metals (Mechler) Pershan/LAMXIV

Our Group. Colleagues (~20 years) Pershan/LAMXIV Balagurusamy, V. S. K. Berman, E. √√Deutsch, M. DiMasi, E. Fukuto, M. Gebhardt, J. Gog, T. Graber, T. Grigoriev, A. Huber, P. Kawamoto, E. H. Kuzmenko, I. Lin, B. H. Magnussen, O. M. √√Mechler, S. Meron, M. Ocko, B. M. Pontoni, D. Regan, M. J. Sellner, S. Shpyrko, O. G. Steimer, C. Stoltz, S. Streitel, R. Tostmann, H. √√Yahel, E Harvard, Non-Harvard, Beam Line √√ Speakers at LAMXIV

Fresnel X-ray Reflectivity Pershan/LAMXIV : Diffuse scattering:

Grazing Incidence Diffraction (GID) Pershan/LAMXIV Diffuse Scattering at Larger 2D Bragg Peaks

Real Liquid Surfaces Pershan/LAMXIV Surface Structur e Thermal capillary waves Reflectivity Diffuse Scattering

Hg In Ga Hg: Magnussen et al. (1995). Ga: Regan et al.(1995) In: Tostmann et al.(1999) Type I: Elemental Liquid Layer Response of Bulk Susceptibility Pershan/LAMXIV Metallic Liquids (D’Evelyn & Rice ‘83)

Type II: Surface Adsorption(Ga-Bi alloy) Bulk Phase Coexistence Pershan/LAMXIV Nattland &Freyland, ’94 Chatain & Wynblatt, ‘96 P. Huber,’03  Surface Tension Gibbs: < 1900 Butler: ’35 Egry: ‘05 Electron Density ξ d  Influence Parameter: d vs T  Calphad Initiative(data)  Gibbs free energy density:

TypeIIIa: Surface Phase Transition 2 Phase Binary Solution Pershan/LAMXIV Bilayer Monolayer Liquid Shpyrko et al. Science 313, 77 (2006) vol. 313 (5783) Mechler et al. LAMXIV (2010) 2D Au-Si Crystals +Layer Au-Si Eutectic Is this Gibbs? Yang et al. PRB. 62, (2000) Gibbs Adsorption Pb-monolayer on Ga 2D Crystal. GID Scattering

Type IIIb: Phase Transition (Insoluble Monolayer ) Pershan/LAMXIV Kraack et al. The Structure and Phase Diagram of Langmuir Films of Alcohols on Mercury. Langmuir 20, 5386 (2004) GID

Structure Factor &Thermal Effects Debye-Waller  Capillary Waves Pershan/LAMXIV 2D Debye-Waller Diffuse Scat: In ~0.01Å -1

Debye-Waller Demonstration Pershan/LAMXIV Ga vs. T GaGa In Hg In Ga GaGa In

Distorted Crystal Layer Model Pershan/ESRF DCM (Magnussen ’95) Only 3 Adjustable Parameters n=

Elemental Liquid Metals Studied Pershan/ESRF KGaInSnBiHg DCM +1 ?  ☐  ☐ Why are 1 st Layers for Bi and Sn different from K, Ga and In? Sn Mol. Dynamic. Simulations Calderín et al. PRB,80, (2009) No Bump  Bump Bi is like Sn! Why is Hg so different?

Eutectic Alloys Pershan/ESRF J. W. Gibbs  B Surface is Rich in “B”. A x B 1-x  A)/  B) Δ H * (mixing) Concentration of Surface Layers 1st2 nd 34d Ga x Bi 1-x 718/378=1.90+4Liquid-Liquid Phase Sep. Ga 83.5 In /556= %In In 78 Bi /378=1.4735%Bi Sn 57 Bi /378= %Bi25%Bi53%Bi Au 71 Sn /560= %Sn<1%Sn24%Sn Au 72 Ge /621= No Gibbs Adsorption Au 82 Si /865= layers, 2DXtal (AuSi 2 ) Pd 81 Ge /621= ~40 Å wetting layer (No Measureable Gibbs Adsorption)

9th Int. Conf on Surf. X-ray and Neutron Scan (Taiwan, Jul.’06). 15 Gibbs Surface Adsorption(BiSn)  Bi =378,  Sn =560, Alloy: Bi and Sn  (Bi) ≈ 398  (Sn)≈ 567 dyne/cm Energy Dispersion: Bi:L3 f(E) Adsorption Scat. Ampl.

Surface Freezing Au 82 Si 18 Eutectic Pershan/LAMXIV SiAu T/γ~0.8 Bragg Peaks LT: Bilayer Xtal HT: Monolayer LL: Liquid Mechler (LAMXIV) Gallium T/γ~0.56 2D-Crystal  Rigidity Rigidity Reduces Debye-Waller

AuGe Eutectic(Should be Similar to Au-Si) Pershan/ESRF  (Au)/γ  Si or Ge) ΔH Au 72 Ge /621= Au 82 Si /865= Au-Si Au-Ge Au-Ge is Different from Au-Si No Surface Freezing Why? Au-Si Surface Frozen Ge≤6.5 atm% 2D GID Scans Pasturel et al. Structure- Liquid Au-Si - molecular dynamics. PRB (2010) Upmanyu et al. (in preparation): NE Sub surface Si enrichment! Si (Surface) (Au-Si) (bonding)

Surface Freezing of Au 82 Si 18 and Glass Forming!(Mechler) Pershan/LAMXIV Glass Former Au-Si Not A Glass Former Au-Ge Glass Former Pd-Si Pd-Ge

Summary Elemental metals  Surface induced layering. Simplest Distorted Crystal Model (Ga,In, K) Debye-Waller Effects of Thermal Capillary Waves Near surface deviations from DCM (Sn, Bi). Other Metal/Vapor Interfaces 2 Phase Binary Alloys (Ga-Bi, Ga-Pb, Ga-Tl)  Gibbs Adsorption, Wetting, 2D Crystals Langmuir Monolayers on Hg (Deutsch) Unexplained behavior of Au 82 Si 18 (Mechler) Eutectic 2D Surface phase transitions for Au-Si New Results I: Au-Cu-Si: (Mechler: LAMXIV) New Results II: Liquid Ge: No Layering (Private Discussion: Mechler and Yahel) New Results from Others:Liquid Metal/Solid: (Deutsch: LAMXIV) Pershan/ESRF