UNC Chapel Hill M. C. Lin Disclaimer The following slides reuse materials from SIGGRAPH 2001 Course Notes on Physically-based Modeling (copyright 2001 by David Baraff at Pixar).
UNC Chapel Hill M. C. Lin Determining Step Size Explicit Integration –Too big, unstable! –Too small, too slow –Adaptive, maybe –Ultimately the constants decide! Implicit Methods –Taking large steps when possible
UNC Chapel Hill M. C. Lin An Example
UNC Chapel Hill M. C. Lin Speed Limitation of Euler’s Method
UNC Chapel Hill M. C. Lin Stiff Equations
UNC Chapel Hill M. C. Lin A Stiff Energy Landscape
UNC Chapel Hill M. C. Lin Example: Particle-on-line
UNC Chapel Hill M. C. Lin Example: Particle-on-line
UNC Chapel Hill M. C. Lin Example: Particle-on-line
UNC Chapel Hill M. C. Lin Example: Particle-on-line
UNC Chapel Hill M. C. Lin Explicit Integration
UNC Chapel Hill M. C. Lin Problems
UNC Chapel Hill M. C. Lin Explicit vs. Implicit Euler Method vs.
UNC Chapel Hill M. C. Lin
UNC Chapel Hill M. C. Lin One Step: Implicit vs. Explicit
UNC Chapel Hill M. C. Lin Large Systems
UNC Chapel Hill M. C. Lin Implicit Integration
UNC Chapel Hill M. C. Lin Implicit Integration
UNC Chapel Hill M. C. Lin Implicit Integration
UNC Chapel Hill M. C. Lin Linearized Implicit Integration
UNC Chapel Hill M. C. Lin Single-Step Implicit Euler Method
UNC Chapel Hill M. C. Lin Solving Large Systems Matrix structure reflects force-coupling: (i, j)th entry exists iff f i depends on X j Conjugate gradient a good first choice