1 Chapter Seven Large and Fast: Exploiting Memory Hierarchy.

Slides:



Advertisements
Similar presentations
1 Lecture 13: Cache and Virtual Memroy Review Cache optimization approaches, cache miss classification, Adapted from UCB CS252 S01.
Advertisements

Computation I pg 1 Embedded Computer Architecture Memory Hierarchy: Cache Recap Course 5KK73 Henk Corporaal November 2014
CMSC 611: Advanced Computer Architecture Cache Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from.
11/8/2005Comp 120 Fall November 9 classes to go! Read Section 7.5 especially important!
Lecture 34: Chapter 5 Today’s topic –Virtual Memories 1.
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
Caching IV Andreas Klappenecker CPSC321 Computer Architecture.
Cs 325 virtualmemory.1 Accessing Caches in Virtual Memory Environment.
The Memory Hierarchy CPSC 321 Andreas Klappenecker.
CSCE 212 Chapter 7 Memory Hierarchy Instructor: Jason D. Bakos.
1 Lecture 20 – Caching and Virtual Memory  2004 Morgan Kaufmann Publishers Lecture 20 Caches and Virtual Memory.
S.1 Review: The Memory Hierarchy Increasing distance from the processor in access time L1$ L2$ Main Memory Secondary Memory Processor (Relative) size of.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
Review CPSC 321 Andreas Klappenecker Announcements Tuesday, November 30, midterm exam.
Recap. The Memory Hierarchy Increasing distance from the processor in access time L1$ L2$ Main Memory Secondary Memory Processor (Relative) size of the.
Chapter 7 Large and Fast: Exploiting Memory Hierarchy Bo Cheng.
The Memory Hierarchy II CPSC 321 Andreas Klappenecker.
1  2004 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
Caching I Andreas Klappenecker CPSC321 Computer Architecture.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
11/3/2005Comp 120 Fall November 10 classes to go! Cache.
1  1998 Morgan Kaufmann Publishers Chapter Seven.
1  2004 Morgan Kaufmann Publishers Chapter Seven.
1 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy (Part II)
Processor Design 5Z032 Memory Hierarchy Chapter 7 Henk Corporaal Eindhoven University of Technology 2009.
11/10/2005Comp 120 Fall November 10 8 classes to go! questions to me –Topics you would like covered –Things you don’t understand –Suggestions.
1 CSE SUNY New Paltz Chapter Seven Exploiting Memory Hierarchy.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
Lecture 33: Chapter 5 Today’s topic –Cache Replacement Algorithms –Multi-level Caches –Virtual Memories 1.
Computing Systems Memory Hierarchy.
Computer Organization and Architecture (AT70.01) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology Instructor: Dr. Sumanta Guha Slide Sources: Patterson.
Lecture 19: Virtual Memory
EECS 318 CAD Computer Aided Design LECTURE 10: Improving Memory Access: Direct and Spatial caches Instructor: Francis G. Wolff Case.
CPE432 Chapter 5A.1Dr. W. Abu-Sufah, UJ Chapter 5B:Virtual Memory Adapted from Slides by Prof. Mary Jane Irwin, Penn State University Read Section 5.4,
1  2004 Morgan Kaufmann Publishers Multilevel cache Used to reduce miss penalty to main memory First level designed –to reduce hit time –to be of small.
Memory and cache CPU Memory I/O. CEG 320/52010: Memory and cache2 The Memory Hierarchy Registers Primary cache Secondary cache Main memory Magnetic disk.
10/18: Lecture topics Memory Hierarchy –Why it works: Locality –Levels in the hierarchy Cache access –Mapping strategies Cache performance Replacement.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
1 Virtual Memory Main memory can act as a cache for the secondary storage (disk) Advantages: –illusion of having more physical memory –program relocation.
1  1998 Morgan Kaufmann Publishers Recap: Memory Hierarchy of a Modern Computer System By taking advantage of the principle of locality: –Present the.
1  2004 Morgan Kaufmann Publishers Lecture 11, Oct. 29, 2007 Syllabus change: –Tues, Oct. 29, 2007 – Caching –Thurs, Nov. 1, 2007 – Review –Tues, Nov.
The Goal: illusion of large, fast, cheap memory Fact: Large memories are slow, fast memories are small How do we create a memory that is large, cheap and.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
Nov. 15, 2000Systems Architecture II1 Machine Organization (CS 570) Lecture 8: Memory Hierarchy Design * Jeremy R. Johnson Wed. Nov. 15, 2000 *This lecture.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
1  2004 Morgan Kaufmann Publishers Chapter Seven Memory Hierarchy-3 by Patterson.
Memory Hierarchy How to improve memory access. Outline Locality Structure of memory hierarchy Cache Virtual memory.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
1  1998 Morgan Kaufmann Publishers Chapter Seven.
1  2004 Morgan Kaufmann Publishers Locality A principle that makes having a memory hierarchy a good idea If an item is referenced, temporal locality:
Improving Memory Access 2/3 The Cache and Virtual Memory
Summary of caches: The Principle of Locality: –Program likely to access a relatively small portion of the address space at any instant of time. Temporal.
1 Chapter Seven. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value.
1 ECE3055 Computer Architecture and Operating Systems Lecture 8 Memory Subsystem Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering.
COSC3330 Computer Architecture
Memory COMPUTER ARCHITECTURE
Yu-Lun Kuo Computer Sciences and Information Engineering
The Goal: illusion of large, fast, cheap memory
Chapter Seven.
Improving Memory Access 1/3 The Cache and Virtual Memory
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Cache Memory Presentation I
Virtual Memory 4 classes to go! Today: Virtual Memory.
EE108B Review Session #6 Daxia Ge Friday February 23rd, 2007
Chapter Five Large and Fast: Exploiting Memory Hierarchy
Memory & Cache.
Presentation transcript:

1 Chapter Seven Large and Fast: Exploiting Memory Hierarchy

2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge on capacitor (must be refreshed) –very small but slower than SRAM (factor of 5 to 10) 7.1 Introduction

3 There are three primary technologies used in building memory hierarchies: 1.DRAM (main memory) 2.SRAM (caches) 3.Magnetic Disk

4 Locality A principle that makes having a memory hierarchy a good idea If an item is referenced, temporal locality: it will tend to be referenced again soon spatial locality: nearby items will tend to be referenced soon. Why does code have locality? Our initial focus: two levels (upper, lower) –block: minimum unit of data –hit: data requested is in the upper level –miss: data requested is not in the upper level

5 Users want large and fast memories! Build memory as a hierarchy of levels (fastest is close to the processor.

6 Hit rate Miss rate Hit time Miss penalty

7 Two issues: –How do we know if a data item is in the cache? –If it is, how do we find it? Our first example: – block size is one word of data – "direct mapped" For each item of data at the lower level, there is exactly one location in the cache where it might be. e.g., lots of items at the lower level share locations in the upper level 7.2 The Basic of Caches

8 Mapping: address is modulo the number of blocks in the cache Direct Mapped Cache

9 Accessing a Cache Example: An eight-word direct-mapped cache

10 For MIPS: What kind of locality are we taking advantage of? Direct Mapped Cache

11 Example: Bits in a Cache How many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bit address? KB = 4K words = 2 12 words Block size = 4 words(2 2 ), 2 10 blocks Each block has 4  32=128 bits of data plus a tag( bits) Thus: the total cache size = 2 10  (128+( )+1) = 2 10  147 = 147 Kbits

12 Example : Mapping an Address to a Multiword Cache Block Consider a cache with 64 blocks and a block size of 16 bytes. What block number does byte address 1200 map to? (Block address) modulo (Number of cache blocks) where the address of the block is: which map to cache number (75 modulo 64) = 11 Notice that this block address is the block containing all address between: Thus, with 16 bytes per block 

13 Taking advantage of spatial locality: Direct Mapped Cache

14 Read hits –this is what we want! Read misses –stall the CPU, fetch block from memory, deliver to cache, restart Write hits: –can replace data in cache and memory (write-through) –write the data only into the cache (write-back the cache later) Write misses: –read the entire block into the cache, then write the word Hits vs. Misses

15 Make reading multiple words easier by using banks of memory It can get a lot more complicated... Hardware Issues

16 Increasing the block size tends to decrease miss rate: Use split caches because there is more spatial locality in code: Performance

17 Performance Simplified model: execution time = (execution cycles + stall cycles)  cycle time stall cycles = # of instructions  miss ratio  miss penalty Two ways of improving performance: –decreasing the miss ratio –decreasing the miss penalty What happens if we increase block size?

18 Compared to direct mapped, give a series of references that: –results in a lower miss ratio using a 2-way set associative cache –results in a higher miss ratio using a 2-way set associative cache assuming we use the “least recently used” replacement strategy Decreasing miss ratio with associativity

19 An implementation

20 Performance

21 Decreasing miss penalty with multilevel caches Add a second level cache: –often primary cache is on the same chip as the processor –use SRAMs to add another cache above primary memory (DRAM) –miss penalty goes down if data is in 2nd level cache Example: –CPI of 1.0 on a 5 Ghz machine with a 5% miss rate, 100ns DRAM access –Adding 2nd level cache with 5ns access time decreases miss rate to.5% Using multilevel caches: –try and optimize the hit time on the 1st level cache –try and optimize the miss rate on the 2nd level cache

22 Cache Complexities Not always easy to understand implications of caches: Theoretical behavior of Radix sort vs. Quicksort Observed behavior of Radix sort vs. Quicksort

23 Cache Complexities Here is why: Memory system performance is often critical factor –multilevel caches, pipelined processors, make it harder to predict outcomes –Compiler optimizations to increase locality sometimes hurt ILP Difficult to predict best algorithm: need experimental data

24 Virtual Memory Main memory can act as a cache for the secondary storage (disk) Advantages: –illusion of having more physical memory –program relocation –protection

25 Pages: virtual memory blocks Page faults: the data is not in memory, retrieve it from disk –huge miss penalty, thus pages should be fairly large (e.g., 4KB) –reducing page faults is important (LRU is worth the price) –can handle the faults in software instead of hardware –using write-through is too expensive so we use writeback

26 Page Tables

27 Page Tables

28 Making Address Translation Fast A cache for address translations: translation lookaside buffer Typical values: entries, miss-rate:.01% - 1% miss-penalty: 10 – 100 cycles

29 TLBs and caches

30 TLBs and Caches

31 Modern Systems

32 Modern Systems Things are getting complicated!

33 Processor speeds continue to increase very fast — much faster than either DRAM or disk access times Design challenge: dealing with this growing disparity –Prefetching? 3 rd level caches and more? Memory design? Some Issues