1 Pertemuan 06 Kejadian Bebas dan Bersyarat Matakuliah: I0134 – Metode Statistika Tahun: 2007.

Slides:



Advertisements
Similar presentations
Pertemuan 03 Teori Peluang (Probabilitas)
Advertisements

1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Copyright ©2005 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4.
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
© 2011 Pearson Education, Inc
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Sets: Reminder Set S – sample space - includes all possible outcomes
Introduction to Probability and Statistics Thirteenth Edition Chapter 3 Probability and Probability Distributions.
Conditional Probability and Independence. Learning Targets 1. I can calculate conditional probability using a 2-way table. 2. I can determine whether.
Probability Sample Space Diagrams.
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
5E Note 4 Statistics with Economics and Business Applications Chapter 3 Probability and Discrete Probability Distributions Experiment, Event, Sample space,
Pertemuan 03 Peluang Kejadian
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 03 Ukuran Pemusatan dan Lokasi Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 05 Ruang Contoh dan Peluang Matakuliah: I0134 –Metode Statistika Tahun: 2007.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Introduction to Probability and Statistics Chapter 4 Probability and Probability Distributions.
Probability.
Conditional Probability Brian Carrico Nov 5, 2009.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4 Part 2.
Chapter 1 Probability Spaces 主講人 : 虞台文. Content Sample Spaces and Events Event Operations Probability Spaces Conditional Probabilities Independence of.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Recap from last lesson Compliment Addition rule for probabilities
1 MATB344 Applied Statistics Chapter 4 Probability and Probability Distributions.
12/7/20151 Math b Conditional Probability, Independency, Bayes Theorem.
Probability. Rules  0 ≤ P(A) ≤ 1 for any event A.  P(S) = 1  Complement: P(A c ) = 1 – P(A)  Addition: If A and B are disjoint events, P(A or B) =
Sixth lecture Concepts of Probabilities. Random Experiment Can be repeated (theoretically) an infinite number of times Has a well-defined set of possible.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Stat 1510: General Rules of Probability. Agenda 2  Independence and the Multiplication Rule  The General Addition Rule  Conditional Probability  The.
Week 21 Rules of Probability for all Corollary: The probability of the union of any two events A and B is Proof: … If then, Proof:
I can find probabilities of compound events.. Compound Events  Involves two or more things happening at once.  Uses the words “and” & “or”
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Mr. Mark Anthony Garcia, M.S. Mathematics Department De La Salle University.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
5E Note 4 Honors Statistics Chapter 5 “Probability”
3-1 Copyright © 2014, 2011, and 2008 Pearson Education, Inc.
Probability Probability Day 4. Independent Practice Topic 3 packet pg
Mutually Exclusive & Independence PSME 95 – Final Project.
Concepts of Probability Introduction to Probability & Statistics Concepts of Probability.
MATB344 Applied Statistics
Peubah Acak Diskrit Pertemuan 07
Chapter 3: Probability Topics
Pertemuan 5 Probabilitas-1
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Probability and Discrete Probability Distributions
Pertemuan 17 Pengujian Hipotesis
Chapter 4 Probability.
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
Introduction to Probability and Statistics
Basic Concepts An experiment is the process by which an observation (or measurement) is obtained. An event is an outcome of an experiment,
Statistical Inference for Managers
Kejadian Bebas dan Bersyarat Pertemuan 06
Principles of Statistics
Statistics for IT Lecture 8,9: Introduction to Probability and
Presentation transcript:

1 Pertemuan 06 Kejadian Bebas dan Bersyarat Matakuliah: I0134 – Metode Statistika Tahun: 2007

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung Peluang Kejadian Bebas Bersyarat dan Teorema Bayes.

3 Outline Materi Peluang kejadian bersyarat Kaidah perkalian dan kejadian bebas Teorema Bayes Kaidah-kaidah penghitungan

4 Conditional Probabilities conditional probability The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as “given”

5 Example 1 Toss a fair coin twice. Define –A: head on second toss –B: head on first toss HT TH TT 1/4 P(A|B) = ½ P(A|not B) = ½ P(A|B) = ½ P(A|not B) = ½ HH P(A) does not change, whether B happens or not… A and B are independent!

6 Example 2 A bowl contains five M&Ms ®, two red and three blue. Randomly select two candies, and define –A: second candy is red. –B: first candy is blue. m m m m m P(A|B) =P(2 nd red|1 st blue)= 2/4 = 1/2 P(A|not B) = P(2 nd red|1 st red) = 1/4 P(A|B) =P(2 nd red|1 st blue)= 2/4 = 1/2 P(A|not B) = P(2 nd red|1 st red) = 1/4 P(A) does change, depending on whether B happens or not… A and B are dependent!

7 Defining Independence We can redefine independence in terms of conditional probabilities: independent Two events A and B are independent if and only if P(A  B) = P(A)P(B|A) = P(B) P(A  B) = P(A) orP(B|A) = P(B) dependent Otherwise, they are dependent. independent Two events A and B are independent if and only if P(A  B) = P(A)P(B|A) = P(B) P(A  B) = P(A) orP(B|A) = P(B) dependent Otherwise, they are dependent. Once you’ve decided whether or not two events are independent, you can use the following rule to calculate their intersection.

8 The Multiplicative Rule for Intersections For any two events, A and B, the probability that both A and B occur is P(A  B) = P(A) P(B given that A occurred) = P(A)P(B|A) If the events A and B are independent, then the probability that both A and B occur is P(A  B) = P(A) P(B)

9 Example 1 In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk? Define H: high riskN: not high risk P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH) = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H) = (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)= 3(.1)(.9) 2 =.243 P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH) = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H) = (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)= 3(.1)(.9) 2 =.243

10 Example 2 Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female? Define H: high riskF: female From the example, P(F) =.49 and P(H|F) =.08. Use the Multiplicative Rule: P(high risk female) = P(H  F) = P(F)P(H|F) =.49(.08) =.0392 From the example, P(F) =.49 and P(H|F) =.08. Use the Multiplicative Rule: P(high risk female) = P(H  F) = P(F)P(H|F) =.49(.08) =.0392

11 The Law of Total Probability P(A) = P(A  S 1 ) + P(A  S 2 ) + … + P(A  S k ) = P(S 1 )P(A|S 1 ) + P(S 2 )P(A|S 2 ) + … + P(S k )P(A|S k ) P(A) = P(A  S 1 ) + P(A  S 2 ) + … + P(A  S k ) = P(S 1 )P(A|S 1 ) + P(S 2 )P(A|S 2 ) + … + P(S k )P(A|S k ) Let S 1, S 2, S 3,..., S k be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of another event A can be written as

12 The Law of Total Probability A A  S k A  S 1 S 2…. S1S1 SkSk P(A) = P(A  S 1 ) + P(A  S 2 ) + … + P(A  S k ) = P(S 1 )P(A|S 1 ) + P(S 2 )P(A|S 2 ) + … + P(S k )P(A|S k ) P(A) = P(A  S 1 ) + P(A  S 2 ) + … + P(A  S k ) = P(S 1 )P(A|S 1 ) + P(S 2 )P(A|S 2 ) + … + P(S k )P(A|S k )

13 Bayes ’ Rule Let S 1, S 2, S 3,..., S k be mutually exclusive and exhaustive events with prior probabilities P(S 1 ), P(S 2 ), …,P(S k ). If an event A occurs, the posterior probability of S i, given that A occurred is

14 We know: P(F) = P(M) = P(H|F) = P(H|M) = We know: P(F) = P(M) = P(H|F) = P(H|M) = Example From a previous example, we know that 49% of the population are female. Of the female patients, 8% are high risk for heart attack, while 12% of the male patients are high risk. A single person is selected at random and found to be high risk. What is the probability that it is a male? Define H: high risk F: female M: male

15 Selamat Belajar Semoga Sukses.