Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:

Slides:



Advertisements
Similar presentations
Spring LSC 2001 LIGO-G W E2 Amplitude Calibration of the Hanford Recombined 2km IFO Michael Landry, LIGO Hanford Observatory Luca Matone, Benoit.
Advertisements

Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Phase Measurement & Quantum Algorithms Dominic Berry IQC University of Waterloo Howard Wiseman Geoff Pryde Brendon Higgins Guoyong Xiang Griffith University.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
Quantum limits on estimating a waveform I.Introduction. What’s the problem? II.Standard quantum limit (SQL) for force detection. The right wrong story.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
LIGO-G W Report on LIGO Science Run S4 Fred Raab On behalf of LIGO Scientific Collaboration.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
E n t a n g l e m e n t Teleportation Alice and Bob Nonlocal influences Fidelity (a) Paranormal phenomena (b) Men are from Mars. Women are from Venus (c)
Shot noise in GW detectors G González. x Power (ASDC) bright dark /2 The dark fringe L+  L L-  L i  L  P=P 0 sin 2 (  t+k  l) = (P 0 /2) (1+sin.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Dynamical decoupling in solids
Imperial College London Institute for Mathematical Sciences & Quantum Optics and Laser Science Group Blackett Laboratory Imperial College London
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
A nonequilibrium renormalization group approach to turbulent reheating A case study in nonlinear nonequilibrium quantum field theory J. Zanella, EC Part.
Quantum Interferometric Sensors 22 APR 09, NIST, Gaithersburg Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
Quantum computation: Why, what, and how I.Qubitology and quantum circuits II.Quantum algorithms III. Physical implementations Carlton M. Caves University.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
Global control, perpetual coupling and the like Easing the experimental burden Simon Benjamin, Oxford. EPSRC. DTI, Royal Soc.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Superfluid dynamics of BEC in a periodic potential Augusto Smerzi INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos.
Phase Separation and Dynamics of a Two Component Bose-Einstein Condensate.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
Quantum limits on linear amplifiers I.What’s the problem? II.Quantum limits on noise in phase-preserving linear amplifiers. The whole story III.Completely.
MONALISA: The precision of absolute distance interferometry measurements Matthew Warden, Paul Coe, David Urner, Armin Reichold Photon 08, Edinburgh.
International Gravitational Wave Network 11/9/2008 Building an Stefan Ballmer, for the LIGO / VIRGO Scientific Collaboration LIGO G
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Quantum metrology: dynamics vs. entanglement
October 1, 2007 Quantum Optical Sensing: Single Mode, Multi-Mode, and Continuous Time Jeffrey H. Shapiro.
ALIGO 0.45 Gpc 2014 iLIGO 35 Mpc 2007 Future Range to Neutron Star Coalescence Better Seismic Isolation Increased Laser Power and Signal Recycling Reduced.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Role of entanglement in extracting information on quantum processes
Interferometer configurations for Gravitational Wave Detectors
Characterization of Advanced LIGO Core Optics
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
the illusion of the Heisenberg scaling
Is there a future for LIGO underground?
Quantum-limited measurements:
Nergis Mavalvala (age 47)
e2e Simulation Techniques in Quantum Microscopy and GW Interferometry
Quantum Optics and Macroscopic Quantum Measurement
Status of LIGO Installation and Commissioning
PHOTONS RESONANT TUNNELING
The Grand Unified Theory of Quantum Metrology
The Laser Interferometer Gravitational-Wave Observatory
Spectroscopy of ultracold bosons by periodic lattice modulations
The Grand Unified Theory of Quantum Metrology
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Quantum metrology: An information-theoretic perspective
Presentation transcript:

Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology: Dynamics vs. entanglement I.Quantum noise limit and Heisenberg limit II.Quantum metrology and resources III.Beyond the Heisenberg limit IV.Two-component BECs for quantum metrology Carlton M. Caves University of New Mexico Collaborators: E. Bagan, S. Boixo, A. Datta, S. Flammia, M. J. Davis, JM Geremia, G. J. Milburn, A Shaji, A. Tacla, M. J. Woolley

View from Cape Hauy Tasman Peninsula Tasmania I. Quantum noise limit and Heisenberg limit

Heisenberg limit Quantum information version of interferometry Quantum noise limit cat state N = 3 Fringe pattern with period 2π/N

Cat-state interferometer Single- parameter estimation State preparation Measurement

Heisenberg limit S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. 247, 135 (1996). V. Giovannetti, S. Lloyd, and L. Maccone, PRL 96, (2006). Generalized uncertainty principle (Cramér-Rao bound) Separable inputs

Achieving the Heisenberg limit cat state

Oljeto Wash Southern Utah II. Quantum metrology and resources

Making quantum limits relevant The serial resource, T, and the parallel resource, N, are equivalent and interchangeable, mathematically. The serial resource, T, and the parallel resource, N, are not equivalent and not interchangeable, physically. Information science perspective Platform independence Physics perspective Distinctions between different physical systems

Working on T and N Laser Interferometer Gravitational Observatory (LIGO) Livingston, Louisiana Hanford, Washington Advanced LIGO High-power, Fabry- Perot cavity (multipass), recycling, squeezed-state (?) interferometers B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, “Heisenberg-limited phase estimation without entanglement or adaptive measurements,” arXiv: [quant-ph].

Making quantum limits relevant. One metrology story

Truchas from East Pecos Baldy Sangre de Cristo Range Northern New Mexico III. Beyond the Heisenberg limit

Beyond the Heisenberg limit The purpose of theorems in physics is to lay out the assumptions clearly so one can discover which assumptions have to be violated.

Improving the scaling with N S. Boixo, S. T. Flammia, C. M. Caves, and JM Geremia, PRL 98, (2007). Metrologically relevant k-body coupling Cat state does the job. Nonlinear Ramsey interferometry

Improving the scaling with N without entanglement S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves, PRA 77, (2008). Product input Product measurement

S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves, PRA 77, (2008); M. J. Woolley, G. J. Milburn, and C. M. Caves, NJP 10, (2008); Improving the scaling with N without entanglement. Two-body couplings

S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M. Caves, PRL 101, (2008); S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M. Caves,PRA 80, (2009). Super-Heisenberg scaling from nonlinear dynamics, without any particle entanglement Scaling robust against decoherence

Czarny Staw Gąsienicowy Tatras Poland IV.Two-component BECs for quantum metrology

Two-component BECs S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M. Caves, PRL 101, (2008); S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M. Caves, PRA 80, (2009).

Two-component BECs J. E. Williams, PhD dissertation, University of Colorado, 1999.

Let’s start over. Two-component BECs Renormalization of scattering strength

Two-component BECs Renormalization of scattering strength

Two-component BECs: Renormalization of scattering strength A. B. Tacla, S. Boixo, A. Datta, A. Shaji, and C. M. Caves, “Nonlinear interferometry with Bose-Einstein condensates,” in preparation.

Two-component BECs Integrated vs. position-dependent phaseRenormalization of scattering strength

Two-component BECs: Integrated vs. position-dependent phase A. B. Tacla, S. Boixo, A. Datta, A. Shaji, and C. M. Caves, “Nonlinear interferometry with Bose-Einstein condensates,” in preparation.

? Perhaps ? With hard, low-dimensional trap or ring Two-component BECs for quantum metrology Losses ? Counting errors ? Measuring a metrologically relevant parameter ? S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M. Caves, PRA 80, (2009); A. B. Tacla, S. Boixo, A. Datta, A. Shaji, and C. M. Caves, “Nonlinear interferometry with Bose-Einstein condensates,” in preparation.