A Plea for Adaptive Data Analysis: Instantaneous Frequencies and Trends For Nonstationary Nonlinear Data Norden E. Huang Research Center for Adaptive Data.

Slides:



Advertisements
Similar presentations
On the Trend, Detrend and the Variability of Nonlinear and Nonstationary Time Series A new application of HHT.
Advertisements

Lecture 7: Basis Functions & Fourier Series
An Introduction to HHT: Instantaneous Frequency, Trend, Degree of Nonlinearity and Non-stationarity Norden E. Huang Research Center for Adaptive Data Analysis.
Norden E. Huang Research Center for Adaptive Data Analysis
Quantification of Nonlinearity and Nonstionarity Norden E. Huang With collaboration of Zhaohua Wu; Men-Tzung Lo; Wan-Hsin Hsieh; Chung-Kang Peng; Xianyao.
What is Frequency? Norden E. Huang Research Center for Adaptive Data Analysis Center for Dynamical Biomarkers and translational Medicine National Central.
Properties of EMD Basis The Adaptive Basis based on and derived from the data by the empirical method satisfy nearly all the traditional requirements for.
Extensions of wavelets
Kizhner 1MAPLD 2005/1020 On the Hilbert-Huang Transform Theoretical Developments Semion Kizhner, Karin Blank, Thomas Flatley, Norden E. Huang, David Petrick.
Nonstationary Signal Processing Hilbert-Huang Transform Joseph DePasquale 22 Mar 07.
A Plea for Adaptive Data Analysis: An Introduction to HHT for Nonlinear and Nonstationary Data Norden E. Huang Research Center for Adaptive Data Analysis.
The Hilbert Transform and Empirical Mode Decomposition: Suz Tolwinski University of Arizona Program in Applied Mathematics Spring 2007 RTG Powerful Tools.
An Adaptive Data Analysis Method with Some Biomedical Applications Norden E. Huang Research Center for Adaptive Data Analysis National Central University.
Stationarity and Degree of Stationarity
G O D D A R D S P A C E F L I G H T C E N T E R Upconversion Study with the Hilbert-Huang Transform Jordan Camp Kenji Numata John Cannizzo Robert Schofield.
Thermodynamics can be defined as the science of energy. Although everybody has a feeling of what energy is, it is difficult to give a precise definition.
A Plea for Adaptive Data Analysis An Introduction to HHT Norden E. Huang Research Center for Adaptive Data Analysis National Central University.
An Introduction to HHT for Nonlinear and Nonstationary Time Series Analysis: A Plea for Adaptive Data Analysis Norden E. Huang Research Center for Adaptive.
The Empirical Mode Decomposition Method Sifting. Goal of Data Analysis To define time scale or frequency. To define energy density. To define joint frequency-energy.
A Confidence Limit for Hilbert Spectrum Through stoppage criteria.
Paradoxes on Instantaneous Frequency a la Leon Cohen Time-Frequency Analysis, Prentice Hall, 1995 Chapter 2: Instantaneous Frequency, P. 40.
Introduction : Time-Frequency Analysis HHT, Wigner-Ville and Wavelet.
An Introduction to Hilbert-Huang Transform: A Plea for Adaptive Data Analysis Norden E. Huang Research Center for Adaptive Data Analysis National Central.
Basic Concepts and Definitions Vector and Function Space. A finite or an infinite dimensional linear vector/function space described with set of non-unique.
Multi-Resolution Analysis (MRA)
On the Marginal Hilbert Spectrum. Outline Definitions of the Hilbert Spectra (HS) and the Marginal Hilbert Spectra (MHS). Computation of MHS The relation.
Zhaohua Wu and N. E. Huang:
7/5/20141FCI. Prof. Nabila M. Hassan Faculty of Computer and Information Fayoum University 2013/2014 7/5/20142FCI.
MATH 3290 Mathematical Modeling
On the Marginal Hilbert Spectrum. Outline Definitions of the Hilbert Spectrum (HS) and the Marginal Hilbert Spectrum (MHS). Computation of MHS The relation.
Frequency and Instantaneous Frequency A Totally New View of Frequency.
The Analytic Function from the Hilbert Transform and End Effects Theory and Implementation.
On the Trend, Detrend and the Variability of Nonlinear and Nonstationary Time Series.
ENSEMBLE EMPIRICAL MODE DECOMPOSITION Noise Assisted Signal Analysis (nasa) Part II EEMD Zhaohua Wu and N. E. Huang: Ensemble Empirical Mode Decomposition:
Frequency and Instantaneous Frequency A Totally New View of Frequency.
Chapter 5 Solutions for Interacting Waves Using A MCM 5.1 Governing Equations and Hierarchy Eq.s 5.2 An Example of Applying A Mode Coupling Method (MCM)
Chapter 18 Superposition and Standing Waves. Waves vs. Particles Waves are very different from particles. Particles have zero size.Waves have a characteristic.
Ensemble Empirical Mode Decomposition
Chapter 15 Oscillatory Motion.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 4 Curve Fitting.
The Story of Wavelets.
Sep.2008DISP Time-Frequency Analysis 時頻分析  Speaker: Wen-Fu Wang 王文阜  Advisor: Jian-Jiun Ding 丁建均 教授   Graduate.
Module 2 SPECTRAL ANALYSIS OF COMMUNICATION SIGNAL.
On the relationship between C n 2 and humidity Carlos O. Font, Mark P. J. L. Chang, Erick A. Roura¹, Eun Oh and Charmaine Gilbreath² ¹Physics Department,
Curve-Fitting Regression
E MPIRICAL M ODE D ECOMPOSITION BASED T ECHNIQUE APPLIED IN EXPERIMENTAL BIOSIGNALS Alexandros Karagiannis Mobile Radio Communications Laboratory School.
An introduction to Empirical Mode Decomposition. The simplest model for a signal is given by circular functions of the type Such “Fourier modes” are of.
On the Trend, Detrend and the Variability of Nonlinear and Nonstationary Time Series Norden E. Huang Research Center for Adaptive Data Analysis National.
Periodic driving forces
421 Pendulum Lab (5pt) Equation 1 Conclusions: We concluded that we have an numerically accurate model to describe the period of a pendulum at all angles.
Advanced Residual Analysis Techniques for Model Selection A.Murari 1, D.Mazon 2, J.Vega 3, P.Gaudio 4, M.Gelfusa 4, A.Grognu 5, I.Lupelli 4, M.Odstrcil.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU Hilbert-Huang Transform(HHT) Presenter: Yu-Hao Chen ID:R /05/07.
Ensemble Empirical Mode Decomposition Zhaohua Wu Center for Ocean-Land-Atmosphere Studies And Norden E Huang National Central University.
Detection of Intermittent Turbulence In Stable Boundary Layer Using Empirical Mode Decomposition Xiaoning Gilliam, Christina Ho, and Sukanta Basu Texas.
An Introduction to Time-Frequency Analysis Speaker: Po-Hong Wu Advisor: Jian-Jung Ding Digital Image and Signal Processing Lab GICE, National Taiwan University.
Detecting Signal from Data with Noise Xianyao Chen Meng Wang, Yuanling Zhang, Ying Feng Zhaohua Wu, Norden E. Huang Laboratory of Data Analysis and Applications,
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Eigenfunctions Fourier Series of CT Signals Trigonometric Fourier Series Dirichlet.
Introduction to HHT for Nonlinear and Nonstationary Time Series Analysis: A Plea for Adaptive Data Analysis Norden E. Huang Research Center for Adaptive.
The Empirical Mode Decomposition Method Sifting. Goal of Data Analysis To define time scale or frequency. To define energy density. To define joint frequency-energy.
Frequency and Instantaneous Frequency A Totally New View of Frequency.
ENSEMBLE EMPIRICAL MODE DECOMPOSITION Noise Assisted Signal Analysis (nasa) Part II EEMD Zhaohua Wu and N. E. Huang: Ensemble Empirical Mode Decomposition:
Paradoxes on Instantaneous Frequency
Lecture 16: Hilbert-Huang Transform Background:
A Conjecture & a Theorem
Wu, Z. , N. E. Huang, S. R. Long and C. K
Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband.
Decomposition nonstationary turbulence velocity in open channel flow
Statistical Methods For Engineers
Propagation of Error Berlin Chen
Presentation transcript:

A Plea for Adaptive Data Analysis: Instantaneous Frequencies and Trends For Nonstationary Nonlinear Data Norden E. Huang Research Center for Adaptive Data Analysis National Central University Zhongli, Taiwan, China Hot Topic Conference, 2011

In search of frequency I found the trend and other information Instantaneous Frequencies and Trends For Nonstationary Nonlinear Data

Prevailing Views on Instantaneous Frequency The term, Instantaneous Frequency, should be banished forever from the dictionary of the communication engineer. J. Shekel, 1953 The uncertainty principle makes the concept of an Instantaneous Frequency impossible. K. Gröchennig, 2001

How to define frequency? It seems to be trivial. But frequency is an important parameter for us to understand many physical phenomena.

Definition of Frequency Given the period of a wave as T ; the frequency is defined as

Traditional Definition of Frequency frequency = 1/period. Definition too crude Only work for simple sinusoidal waves Does not apply to nonstationary processes Does not work for nonlinear processes Does not satisfy the need for wave equations

The Idea and the need of Instantaneous Frequency According to the classic wave theory, the wave conservation law is based on a gradually changing φ(x,t) such that Therefore, both wave number and frequency must have instantaneous values and differentiable.

Instantaneous Frequency

Hilbert Transform : Definition

The Traditional View of the Hilbert Transform for Data Analysis

Traditional View a la Hahn (1995) : Data LOD

Traditional View a la Hahn (1995) : Hilbert

Traditional Approach a la Hahn (1995) : Phase Angle

Traditional Approach a la Hahn (1995) : Phase Angle Details

Traditional Approach a la Hahn (1995) : Frequency

Why the traditional approach does not work?

Hilbert Transform a cos  + b : Data

Hilbert Transform a cos  + b : Phase Diagram

Hilbert Transform a cos  + b : Phase Angle Details

Hilbert Transform a cos  + b : Frequency

The Empirical Mode Decomposition Method and Hilbert Spectral Analysis Sifting

Empirical Mode Decomposition: Methodology : Test Data

Empirical Mode Decomposition: Methodology : data and m1

Empirical Mode Decomposition: Methodology : data & h1

Empirical Mode Decomposition: Methodology : h1 & m2

Empirical Mode Decomposition: Methodology : h3 & m4

Empirical Mode Decomposition: Methodology : h4 & m5

Empirical Mode Decomposition Sifting : to get one IMF component

The Stoppage Criteria The Cauchy type criterion: when SD is small than a pre- set value, where Or, simply pre-determine the number of iterations.

Effects of Sifting To remove ridding waves To reduce amplitude variations The systematic study of the stoppage criteria leads to the conjecture connecting EMD and Fourier Expansion.

Empirical Mode Decomposition: Methodology : IMF c1

Definition of the Intrinsic Mode Function (IMF): a necessary condition only!

Empirical Mode Decomposition: Methodology : data, r1 and m1

Empirical Mode Decomposition Sifting : to get all the IMF components

Definition of Instantaneous Frequency

An Example of Sifting & Time-Frequency Analysis

Length Of Day Data

LOD : IMF

Orthogonality Check Pair-wise % Overall %

LOD : Data & c12

LOD : Data & Sum c11-12

LOD : Data & sum c10-12

LOD : Data & c9 - 12

LOD : Data & c8 - 12

LOD : Detailed Data and Sum c8-c12

LOD : Data & c7 - 12

LOD : Detail Data and Sum IMF c7-c12

LOD : Difference Data – sum all IMFs

Properties of EMD Basis The Adaptive Basis based on and derived from the data by the empirical method satisfy nearly all the traditional requirements for basis empirically and a posteriori: Complete Convergent Orthogonal Unique

The combination of Hilbert Spectral Analysis and Empirical Mode Decomposition has been designated by NASA as HHT (HHT vs. FFT)

Comparison between FFT and HHT

Comparisons: Fourier, Hilbert & Wavelet

Speech Analysis Hello : Data

Four comparsions D

Traditional View a la Hahn (1995) : Hilbert

Mean Annual Cycle & Envelope: 9 CEI Cases

Mean Hilbert Spectrum : All CEs

For quantifying nonlinearity we need instantaneous frequency. For

How to define Nonlinearity? How to quantify it through data alone?

The term, ‘Nonlinearity,’ has been loosely used, most of the time, simply as a fig leaf to cover our ignorance. Can we be more precise?

How is nonlinearity defined? Based on Linear Algebra: nonlinearity is defined based on input vs. output. But in reality, such an approach is not practical: natural system are not clearly defined; inputs and out puts are hard to ascertain and quantify. Furthermore, without the governing equations, the order of nonlinearity is not known. In the autonomous systems the results could depend on initial conditions rather than the magnitude of the ‘inputs.’ The small parameter criteria could be misleading: sometimes, the smaller the parameter, the more nonlinear.

Linear Systems Linear systems satisfy the properties of superposition and scaling. Given two valid inputs to a system H, as well as their respective outputs then a linear system, H, must satisfy for any scalar values α and β.

How is nonlinearity defined? Based on Linear Algebra: nonlinearity is defined based on input vs. output. But in reality, such an approach is not practical: natural system are not clearly defined; inputs and out puts are hard to ascertain and quantify. Furthermore, without the governing equations, the order of nonlinearity is not known. In the autonomous systems the results could depend on initial conditions rather than the magnitude of the ‘inputs.’ The small parameter criteria could be misleading: sometimes, the smaller the parameter, the more nonlinear.

How should nonlinearity be defined? The alternative is to define nonlinearity based on data characteristics: Intra-wave frequency modulation. Intra-wave frequency modulation is known as the harmonic distortion of the wave forms. But it could be better measured through the deviation of the instantaneous frequency from the mean frequency (based on the zero crossing period).

Characteristics of Data from Nonlinear Processes

Duffing Pendulum x

Duffing Equation : Data

Hilbert ’ s View on Nonlinear Data Intra-wave Frequency Modulation

A simple mathematical model

Duffing Type Wave Data: x = cos(wt+0.3 sin2wt)

Duffing Type Wave Perturbation Expansion

Duffing Type Wave Wavelet Spectrum

Duffing Type Wave Hilbert Spectrum

Degree of nonlinearity

Degree of Nonlinearity DN is determined by the combination of δη precisely with Hilbert Spectral Analysis. Either of them equals zero means linearity. We can determine δ and η separately: –η can be determined from the instantaneous frequency modulations relative to the mean frequency. –δ can be determined from DN with known η. NB: from any IMF, the value of δη cannot be greater than 1. The combination of δ and η gives us not only the Degree of Nonlinearity, but also some indications of the basic properties of the controlling Differential Equation, the Order of Nonlinearity.

Stokes Models

Data and IFs : C1

Summary Stokes I

Lorenz Model Lorenz is highly nonlinear; it is the model equation that initiated chaotic studies. Again it has three parameters. We decided to fix two and varying only one. There is no small perturbation parameter. We will present the results for ρ=28, the classic chaotic case.

Phase Diagram for ro=28

X-Component DN1= CDN=0.5027

Data and IF

Spectra data and IF

Comparisons FourierWaveletHilbert Basisa priori Adaptive FrequencyIntegral transform: Global Integral transform: Regional Differentiation: Local PresentationEnergy-frequencyEnergy-time- frequency Nonlinearno yes, quantifying Non-stationarynoyesYes, quantifying Uncertaintyyes no Harmonicsyes no

How to define Trend ? Parametric or Non-parametric? Intrinsic vs. extrinsic approach?

The State-of-the arts: Trend “ One economist ’ s trend is another economist ’ s cycle ” Watson : Engle, R. F. and Granger, C. W. J Long-run Economic Relationships. Cambridge University Press.

Philosophical Problem Anticipated 名不正則言不順 言不順則事不成 —— 孔夫子

On Definition Without a proper definition, logic discourse would be impossible. Without logic discourse, nothing can be accomplished. Confucius

Definition of the Trend Within the given data span, the trend is an intrinsically fitted monotonic function, or a function in which there can be at most one extremum. The trend should be an intrinsic and local property of the data; it is determined by the same mechanisms that generate the data. Being local, it has to associate with a local length scale, and be valid only within that length span, and be part of a full wave length. The method determining the trend should be intrinsic. Being intrinsic, the method for defining the trend has to be adaptive. All traditional trend determination methods are extrinsic.

Algorithm for Trend Trend should be defined neither parametrically nor non-parametrically. It should be the residual obtained by removing cycles of all time scales from the data intrinsically. Through EMD.

Global Temperature Anomaly Annual Data from 1856 to 2003

Global Temperature Anomaly 1856 to 2003

IMF Mean of 10 Sifts : CC(1000, I)

Mean IMF

STD IMF

Statistical Significance Test

Data and Trend C6

Rate of Change Overall Trends : EMD and Linear

Conclusion With EMD, we can define the true instantaneous frequency and extract trend from any data. We can also talk about nonlinearity quantitatively. Among other applications, the degree of nonlinearity could be used to set an objective criterion in structural health monitoring and to quantify the degree of nonlinearity in natural phenomena; the trend could be used in financial as well as natural sciences. These are all possible because of adaptive data analysis method.

The job of a scientist is to listen carefully to nature, not to tell nature how to behave. Richard Feynman To listen is to use adaptive method and let the data sing, and not to force the data to fit preconceived modes. The Job of a Scientist

All these results depends on adaptive approach. Thanks

What This Means EMD separates scales in physical space; it generates an extremely sparse representation for any given data. Added noises help to make the decomposition more robust with uniform scale separations. Instantaneous Frequency offers a total different view for nonlinear data: instantaneous frequency needs no harmonics and is unlimited by uncertainty principle. Adaptive basis is indispensable for nonstationary and nonlinear data analysis EMD establishes a new paradigm of data analysis

Outstanding Mathematical Problems 1.Mathematic rigor on everything we do. (tighten the definitions of IMF,….) 2.Adaptive data analysis (no a priori basis methodology in general) 3. Prediction problem for nonstationary processes (end effects) 4. Optimization problem (the best stoppage criterion and the uniqueness of the decomposition) 5. Convergence problem (best spline implement, and 2-D)

Conclusion Adaptive method is the only scientifically meaningful way to analyze nonlinear and nonstationary data. It is the only way to find out the underlying physical processes; therefore, it is indispensable in scientific research. EMD is adaptive; It is physical, direct, and simple. But, we have a lot of problems And need a lot of helps!

Up Hill Does the road wind up-hill all the way? Yes, to the very end. Will the day’s journey take the whole long day? From morn to night, my friend. --- Christina Georgina Rossetti

A less poetic paraphrase There is no doubt that our road will be long and that our climb will be steep. …… But, anything is possible. --- Barack Obama 18 Jan 2009, Lincoln Memorial

History of HHT 1998: The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis, Proc. Roy. Soc. London, A454, The invention of the basic method of EMD, and Hilbert transform for determining the Instantaneous Frequency and energy. 1999: A New View of Nonlinear Water Waves – The Hilbert Spectrum, Ann. Rev. Fluid Mech. 31, Introduction of the intermittence in decomposition. 2003: A confidence Limit for the Empirical mode decomposition and the Hilbert spectral analysis, Proc. of Roy. Soc. London, A459, Establishment of a confidence limit without the ergodic assumption. 2004: A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method, Proc. Roy. Soc. London, A460, Defined statistical significance and predictability.

Recent Developments in HHT 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci., 104, 14,889-14,894. The correct adaptive trend determination method 2009: On Ensemble Empirical Mode Decomposition. Advances in Adaptive Data Analysis. Advances in Adaptive data Analysis, 1, : On instantaneous Frequency. Advances in Adaptive Data Analysis, 2, : Multi-Dimensional Ensemble Empirical Mode Decomposition. Advances in Adaptive Data Analysis 3, : Degree of Nonlinearity. Patent and Paper