© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of.
Advertisements

Heaps1 Part-D2 Heaps Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is a pair (key, value)
Data Structures Lecture 7 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
The Priority Queue Abstract Data Type. Heaps. Adaptable Priority Queue. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich,
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
Trees1 Recursion Recursion is a concept of defining a method that makes a call to itself.
Chapter 8: Priority Queues
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Priority Queue Sorting (§ 8.1.4) We can use a priority queue to sort a set.
Chapter 7: Trees Objectives:
© 2004 Goodrich, Tamassia Trees1 Lecture 04 Trees Topics Trees Binary Trees Binary Search trees.
© 2004 Goodrich, Tamassia Trees1 this is a tree. © 2004 Goodrich, Tamassia Trees2 What is a Tree? In computer science, a tree is an abstract model of.
Trees COMP53 Oct 31, What is a Tree? A tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation.
Trees1 Part-C Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
Priority Queues1 Part-D1 Priority Queues. Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is.
Chapter 8: Priority Queues and Heaps Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
1 Priority Queues CPS212 Gordon College VIP. 2 Introduction to STL Priority Queues Adaptor container - underlying container may be either: – a template.
© 2004 Goodrich, Tamassia Priority Queues1. © 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection.
Heaps and Priority Queues Priority Queue ADT (§ 2.4.1) A priority queue stores a collection of items An item is a pair (key, element) Main.
Trees CSCI 3333 Data Structures. Acknowledgement  Dr. Bun Yue  Mr. Charles Moen  Dr. Wei Ding  Ms. Krishani Abeysekera  Dr. Michael Goodrich  Dr.
Chapter 21 Binary Heap.
Priority Queues & Heaps Chapter 9. Iterable Collection Abstract Collection Queue List Abstract Queue Priority Queue Array List Abstract List Vector Stack.
PRIORITY QUEUES AND HEAPS CS16: Introduction to Data Structures & Algorithms Tuesday, February 24,
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Priority Queues and Heaps. Outline and Reading PriorityQueue ADT (§8.1) Total order relation (§8.1.1) Comparator ADT (§8.1.2) Sorting with a Priority.
Chapter 2.4: Priority Queues and Heaps PriorityQueue ADT (§2.4.1) Total order relation (§2.4.1) Comparator ADT (§2.4.1) Sorting with a priority queue (§2.4.2)
Chapter 2: Basic Data Structures. Spring 2003CS 3152 Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority.
CH 8. HEAPS AND PRIORITY QUEUES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2013 Goodrich, Tamassia, Goldwasser.
CS 2468: Assignment 2 (Due Week 9, Tuesday. Drop a hard copy in Mail Box 75 or hand in during the lecture) Use array representation (double a[]) to implement.
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
24 January Trees CSE 2011 Winter Trees Linear access time of linked lists is prohibitive  Does there exist any simple data structure for.
Heaps © 2010 Goodrich, Tamassia. Heaps2 Priority Queue ADT  A priority queue (PQ) stores a collection of entries  Typically, an entry is a.
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
Priority Queues Last Update: Oct 23, 2014 EECS2011: Priority Queues1.
1 COMP9024: Data Structures and Algorithms Week Seven: Priority Queues Hui Wu Session 1, 2016
TREE Ahsan Ahmed College of Computer and Information Science Majma’ah University 1.
1 COMP9024: Data Structures and Algorithms Week Five: Trees Hui Wu Session 1, 2015
Heaps and Priority Queues What is a heap? A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
Sorting With Priority Queue In-place Extra O(N) space
Trees 5/10/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Priority Queues 5/3/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Heaps (8.3) CSE 2011 Winter May 2018.
Priority Queues © 2010 Goodrich, Tamassia Priority Queues 1
Heaps 8/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
COMP9024: Data Structures and Algorithms
Part-D1 Priority Queues
Heaps © 2010 Goodrich, Tamassia Heaps Heaps
Heaps 9/13/2018 3:17 PM Heaps Heaps.
Heaps and Priority Queues
Priority Queues and Heaps
Part-D1 Priority Queues
Heaps and Priority Queues
Heaps 11/27/ :05 PM Heaps Heaps.
Tree Representation Heap.
Heaps A heap is a binary tree.
Heaps and Priority Queues
© 2013 Goodrich, Tamassia, Goldwasser
Copyright © Aiman Hanna All rights reserved
Heaps 12/4/2018 5:27 AM Heaps /4/2018 5:27 AM Heaps.
Ch. 8 Priority Queues And Heaps
Heaps and Priority Queues
Heaps © 2014 Goodrich, Tamassia, Goldwasser Heaps Heaps
Lecture 9 CS2013.
Heaps and Priority Queues
1 Lecture 10 CS2013.
CS210- Lecture 14 July 5, 2005 Agenda Inserting into Heap
Heaps 9/29/2019 5:43 PM Heaps Heaps.
CS210- Lecture 13 June 28, 2005 Agenda Heaps Complete Binary Tree
Presentation transcript:

© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue

© 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry with key k and value x removeMin() removes and returns the entry with smallest key Additional methods min() returns, but does not remove, an entry with smallest key size(), isEmpty() Applications: Standby flyers Auctions Stock market

© 2004 Goodrich, Tamassia Priority Queues3 Implementing Priority Queue with Linked Lists Implementation with an unsorted list Performance: insert takes O(1) time since we can insert the item at the beginning or end of the sequence removeMin and min take O(n) time since we have to traverse the entire sequence to find the smallest key Implementation with a sorted list Performance: insert takes O(n) time since we have to find the place where to insert the item removeMin and min take O(1) time, since the smallest key is at the beginning

© 2004 Goodrich, Tamassia Priority Queues4 Can we do better? Yes, using Heaps, which are built using Trees : A B D C GH E F I J K

© 2004 Goodrich, Tamassia Priority Queues5 What is a Tree In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation Applications: Organization charts File systems Programming environments Computers”R”Us SalesR&DManufacturing LaptopsDesktops US International EuropeAsiaCanada

© 2004 Goodrich, Tamassia Priority Queues6 subtree Tree Terminology Root: node without parent (A) Internal node: node with at least one child (A, B, C, F) External node (a.k.a. leaf ): node without children (E, I, J, K, G, H, D) Ancestors of a node: parent, grandparent, grand-grandparent, etc. Depth of a node: number of ancestors Height of a tree: maximum depth of any node (3) Descendant of a node: child, grandchild, grand-grandchild, etc. A B DC GH E F IJ K Subtree: tree consisting of a node and its descendants

© 2004 Goodrich, Tamassia Priority Queues7 Binary Trees A binary tree is a tree with the following properties: Each internal node has at most two children (exactly two for proper binary trees) The children of a node are an ordered pair We call the children of an internal node left child and right child Alternative recursive definition: a binary tree is either a tree consisting of a single node, or a tree whose root has an ordered pair of children, each of which is a binary tree Applications: arithmetic expressions decision processes TODAY: HEAPS! A B C FG D E H I

© 2004 Goodrich, Tamassia Priority Queues8 (Binary) Tree ADT We use positions to abstract nodes Generic methods: int size() boolean isEmpty() Iterator elements() Iterator positions() Accessor methods: Position root() Position parent(p) Iterator children(p) Query methods: boolean isInternal(p) boolean isExternal(p) boolean isRoot(p) Update method: object replace (p, o) Additional methods for BinaryTree (extends Tree): position left(p) position right(p) boolean hasLeft(p) boolean hasRight(p)

© 2004 Goodrich, Tamassia Priority Queues9 Linked Structure for Binary Trees A node is represented by an object storing Element Parent node Left child node Right child node Node objects implement the Position ADT B D A CE   BADCE 

© 2004 Goodrich, Tamassia Priority Queues10 Heaps

© 2004 Goodrich, Tamassia Priority Queues11 Recall Priority Queue ADT: A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, v) inserts an entry with key k and value v removeMin() removes and returns the entry with smallest key Additional methods min() returns, but does not remove, an entry with smallest key size(), isEmpty()

© 2004 Goodrich, Tamassia Priority Queues12 Heaps A heap is a binary tree storing keys at its nodes and satisfying the following two properties: 1.Heap-Order: for every internal node v other than the root, key(v)  key(parent(v)) 2.Complete Binary Tree: let h be the height of the heap  for i  0, …, h  1, there are 2 i nodes of depth i  at depth h  1, the internal nodes are to the left of the external nodes B DG H T The last node of a heap is the rightmost node of depth h last node

© 2004 Goodrich, Tamassia Priority Queues13 Height of a Heap Theorem: A heap storing n keys has height O(log n) Proof: (we apply the complete binary tree property) Let h be the height of a heap storing n keys Since there are 2 i keys at depth i  0, …, h  1 and at least one key at depth h, we have n  1  2  4  …  2 h  1  1 Thus, n  2 h, i.e., h  log n 1 2 2h12h1 1 keys 0 1 h1h1 h depth

© 2004 Goodrich, Tamassia Priority Queues14 Heap Implementation of a Priority Queue We store a (key, value) item at each internal node We keep track of the position of the last node (2, Sue) (6, Mark) (5, Pat) (9, Jeff)(7, Anna) For simplicity, in later pictures we show only the keys, instead of the (key, value) pairs

© 2004 Goodrich, Tamassia Priority Queues15 Insertion into a Heap Method insert(k,v) of the priority queue corresponds to the insertion of a key k to the heap The insertion algorithm consists of three steps Find the insertion node z (the new last node) Store k at z Restore the heap-order property (discussed next) insertion node z z

© 2004 Goodrich, Tamassia Priority Queues16 Upheap After the insertion of a new key k, the heap-order property may be violated Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k Since a heap has height O(log n), upheap runs in O(log n) time z z

© 2004 Goodrich, Tamassia Priority Queues17 Removal from a Heap Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap The removal algorithm consists of three steps Replace the root key with the key of the last node w Remove w Restore the heap-order property (discussed next) last node w w new last node

© 2004 Goodrich, Tamassia Priority Queues18 Downheap After replacing the root key with the key k of the last node, the heap-order property may be violated Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k Since a heap has height O(log n), downheap runs in O(log n) time w w

© 2004 Goodrich, Tamassia Priority Queues19 Updating the Last Node The insertion node can be found by traversing a path of O(log n) nodes Go up until a left child or the root is reached If a left child is reached, go to the right child Go down left until a leaf is reached Similar algorithm for updating the last node after a removal

© 2004 Goodrich, Tamassia Priority Queues20 Extra: Array-Based Implementation of Binary Trees and Heaps

© 2004 Goodrich, Tamassia Priority Queues21 Array-Based Representation of Binary Trees nodes are stored in an array … let rank(node) be defined as follows: rank(root) = 1 if node is the left child of parent(node), rank(node) = 2*rank(parent(node)) if node is the right child of parent(node), rank(node) = 2*rank(parent(node)) A HG FE D C B J

© 2004 Goodrich, Tamassia Priority Queues22 Array-List based Heap Implementation We can represent a heap with n keys by means of an array list of length n  1 For the node at rank i the left child is at rank 2i the right child is at rank 2i  1 Links between nodes are not explicitly stored The cell of at rank 0 is not used Operation insert corresponds to inserting at rank n  1 Operation removeMin corresponds to removing at rank n Note that insert at rank n  1 and delete at rank n are O(1)

© 2004 Goodrich, Tamassia Priority Queues23 Extra: Bottom-Up Heap Construction

© 2004 Goodrich, Tamassia Priority Queues24 We can construct a heap storing n given keys in using a bottom-up construction with log n phases In phase i, pairs of heaps with 2 i  1 keys are merged into heaps with 2 i  1  1 keys Bottom-up Heap Construction 2 i  1 2i112i11

© 2004 Goodrich, Tamassia Priority Queues25 Example

© 2004 Goodrich, Tamassia Priority Queues26 Example (contd.)

© 2004 Goodrich, Tamassia Priority Queues27 Example (contd.)

© 2004 Goodrich, Tamassia Priority Queues28 Example (end)

© 2004 Goodrich, Tamassia Priority Queues29 Analysis We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path) Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n) Thus, bottom-up heap construction runs in O(n) time Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

© 2004 Goodrich, Tamassia Priority Queues30 Extra: Application of Priority Queue to Sorting

© 2004 Goodrich, Tamassia Priority Queues31 Priority Queue Sorting (§ 7.1.4) We can use a priority queue to sort a set of comparable elements 1.Insert the elements one by one with a series of insert operations 2.Remove the elements in sorted order with a series of removeMin operations The running time of this sorting method depends on the priority queue implementation Algorithm PQ-Sort(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C P  priority queue with comparator C while  S.isEmpty () e  S.removeFirst () P.insert (e, 0) while  P.isEmpty() e  P.removeMin().key() S.insertLast(e)

© 2004 Goodrich, Tamassia Priority Queues32 Selection-Sort Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence Running time of Selection-sort: 1.Inserting the elements into the priority queue with n insert operations takes O(n) time 2.Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to 1  2  …  n Selection-sort runs in O(n 2 ) time

© 2004 Goodrich, Tamassia Priority Queues33 Selection-Sort Example Sequence SPriority Queue P Input:(7,4,8,2,5,3,9)() Phase 1 (a)(4,8,2,5,3,9)(7) (b)(8,2,5,3,9)(7,4) (g)()(7,4,8,2,5,3,9) Phase 2 (a)(2)(7,4,8,5,3,9) (b)(2,3)(7,4,8,5,9) (c)(2,3,4)(7,8,5,9) (d)(2,3,4,5)(7,8,9) (e)(2,3,4,5,7)(8,9) (f)(2,3,4,5,7,8)(9) (g)(2,3,4,5,7,8,9)()

© 2004 Goodrich, Tamassia Priority Queues34 Insertion-Sort Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence Running time of Insertion-sort: 1.Inserting the elements into the priority queue with n insert operations takes time proportional to 1  2  …  n 2.Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time Insertion-sort runs in O(n 2 ) time

© 2004 Goodrich, Tamassia Priority Queues35 Insertion-Sort Example Sequence SPriority queue P Input:(7,4,8,2,5,3,9)() Phase 1 (a)(4,8,2,5,3,9)(7) (b)(8,2,5,3,9)(4,7) (c)(2,5,3,9)(4,7,8) (d)(5,3,9)(2,4,7,8) (e)(3,9)(2,4,5,7,8) (f)(9)(2,3,4,5,7,8) (g)()(2,3,4,5,7,8,9) Phase 2 (a)(2)(3,4,5,7,8,9) (b)(2,3)(4,5,7,8,9) (g)(2,3,4,5,7,8,9)()

© 2004 Goodrich, Tamassia Priority Queues36 In-place Insertion-sort Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place A portion of the input sequence itself serves as the priority queue For in-place insertion-sort We keep sorted the initial portion of the sequence We can use swaps instead of modifying the sequence

© 2004 Goodrich, Tamassia Priority Queues37 Heap-Sort Consider a priority queue with n items implemented by means of a heap the space used is O(n) methods insert and removeMin take O(log n) time methods size, isEmpty, and min take time O(1) time Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time The resulting algorithm is called heap-sort Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort