Polariton Physics and Devices Pavlos G. Savvidis Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL.

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

Conference Venue The Conference will be held at the Creta Maris Conference Center, Hersonissos, Crete, Greece. The Creta Maris Hotel and Conference Center.
PLMCN‘10 Bloch-Polaritons in Multiple Quantum Well Photonic Crystals David Goldberg 1, Lev I. Deych 1, Alexander Lisyansky 1, Zhou Shi 1, Vinod M. Menon.
ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Optical sources Lecture 5.
From weak to strong coupling of quantum emitters in metallic nano-slit Bragg cavities Ronen Rapaport.
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
Laser III Device Design & Materials Selection
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
Modern Communication Systems Optical Fibre Communication Systems
Slow light in photonic crystal waveguides Nikolay Primerov.
IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Optical cavity with high quality factor Q Photonic crystals course final presentation Karin Söderström.
Fiber-Optic Communications James N. Downing. Chapter 5 Optical Sources and Transmitters.
Research Highlights – N. Pelekanos
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
Diode laser The diode or semiconductor laser Diode lasers are extremely compact (0.3×0.2×0.1 mm), high efficiency (up to 40%), tuneable lasers, which have.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Prof. Juejun (JJ) Hu MSEG 667 Nanophotonics: Materials and Devices 9: Absorption & Emission Processes Prof. Juejun (JJ) Hu
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Principle of Diode LASER Laser 2
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
Fiber Optic Light Sources
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics.
Ashida lab M1 toyota M. Cai, O.Painter, K. J. Vahala, Opt. Lett. 25, 1430 (2000). Fiber-coupled microsphere laser.
Physical Phenomena for TeraHertz Electronic Devices
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
Theory of Intersubband Antipolaritons Mauro F
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
Bose-Einstein Condensation of Exciton-Polaritons in a Two-Dimensional Trap D.W. Snoke R. Balili V. Hartwell University of Pittsburgh L. Pfeiffer K. West.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
Quantum Dot Nucleation in Glass Microsphere Resonators Anu Tewary (student) and Mark Brongersma (PI) Stanford University, DMR A thin layer of Si-rich.
The authors gratefully acknowledge the financial support of the EPSRC Nonresonant random lasing from a smectic A* liquid crystal scattering device S. M.
Itoh Lab. M1 Masataka YASUDA
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Heterostructures & Optoelectronic Devices
Hybrid Bose-Fermi systems
Itoh Laboratory Masataka Yasuda
1 Sources and detectors of light 1)Revision: semiconductors 2)Light emitting diodes (LED) 3)Lasers 4)Photodiodes for integrated optics and optical communications.
Advisor: Prof. Yen-Kuang Kuo
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial Hiroki Okada Asida Lab. Osaka Univ.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
Intensity I (W m-2)m-2). Intensity = Power  I = P A Area.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Optical sources Types of optical sources
1 II-VI semiconductor microcavities microcavity physics polariton stimulation prospects.
UPM, DIAC. Open Course. March EMITTERS AND PDs 8.1 Emitter Basics 8.2 LEDs and Lasers 8.3 PD Basics 8.4 PD Parameters 8.5 Catalogs.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
Advanced laser and led structures, applications
Optical Emitters and Receivers
LIGHT EMITTING DIODE – Design Principles
SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY
Teoria quantistica: Polaritone.
Photonics-More 22 February 2017
Interaction between Photons and Electrons
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Light Sources for Optical Communications
Photonics-LED And LASER 29 February 2016
NSF Project: Semiconductor Technology for Nanoscale Lasers and Quantum Light Sources D.G. Deppe CREOL, College of Optics and Photonics, UCF Prof. Tomo.
Fig. 4-1: Pure-crystal energy-band diagram
Photovoltaics Continued: Chapter 14 4 and 6 March 2015
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Photonics-More 6 March 2019 One More slide on “Bandgap” Engineering.
Kenji Kamide* and Tetsuo Ogawa
Presentation transcript:

Polariton Physics and Devices Pavlos G. Savvidis Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL

dd Engineering Light Matter Interactions modify photonic and electronic wavefunctions in semiconductor heterostructures Confined electronic states: band gap energy modulation photons: refractive index modulation enhance, inhibit spontaneous radiation new properties, novel interactions, novel emitters AlAs GaAs AlAs e-e- high finesse cavity FORTH Microelectronics Research Group Univ. of Crete T δ QD

Weak Coupling Regime γ: loss channel (e.g. imperfect mirror) Ω coupling strength between optical transition of the material and the resonance photon mode Weak Coupling Regime (γ>>Ω) : emitted photon leaves the resonator (after some reflections) no reabsorption  Spontaneous Emission is irreversible FORTH Microelectronics Research Group Univ. of Crete γ Ω

Strong Coupling Regime γ: loss channel Ω coupling strength between optical transition of the material and the resonance photon mode Strong Coupling Regime (Ω>>γ) : emitted photon will be reabsorbed before it leaves the cavity  Spontaneous Emission is a reversible process Polaritons FORTH Microelectronics Research Group Univ. of Crete γ Ω

Research Activities GaAs Polariton LEDs & Lasers Strong Coupling in GaN Microcavties - common idea of engineering light matter interactions at nanoscale Bragg Polaritons Ultralow threshold lasers Robust polariton devices at RT Very strong nonlinearities Hybrid Organic-Inorganic LEDs

Temperature (K) X EL intensity C C X Energy (eV) Polariton Light Emitting Diode (LED) S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis, Nature 453, 372 (2008) Polariton electroluminescence up to room temperature

Strong exciton-Bragg mode coupling regime Bragg polaritons A. Askitopoulos et al., Phys. Rev. Lett. 106, (2011) 30K

People Prof. PG Savvidis Dr. Peter Eldridge Dr. Simos Tsintzos Dr. Manolis Trichas PhD Niccolo Somaschi PhD Panos Tsotsis PhD Tingge Gao PhD Kostas Daskalakis Alumni MS A. Askitopoulos MS C. Xenogianni MS N. Xatzidimitriou MS P. Tsotsis Collaborators Prof. Pelekanos Materials Prof. Z. Hatzopoulos Physics Prof. Iliopoulos Physics Prof. I Perakis Physics University of Durham Prof. M. Kaliteevski University of Sheffield Prof D. Lidzey Prof. J. J. Baumberg Dr. G. Christmann University of Cambridge University of Southampton Prof P. Lagoudakis Dr. G. Kostantinidis IESL Dr. G. Deligeorgis IESL Group

Funding EU FP7 : ITN grants “CLERMONT4” Polariton Lasers “ICARUS” Hybrid Materials National: PENED’03 GaN Microcavities Pythagoras II Organic Microcavities Herakleitos II Polariton Devices Industrial Mesophotonics Ltd. (PENED’03) Total Funding : ~ 1M Euro Principle Investigator in: A.Askitopoulos, Phys. Rev. Lett. 106, (2011) G. Christmann, Appl. Phys. Lett. 98, (2011) G Dialynas, J. Appl. Phys. 108, (2010) G. Christmann, Phys. Rev. B 82, (2010) E. Trichas, Appl. Phys. Lett. 94, (2009) S. I. Tsintzos, Appl. Phys. Lett. 94, (2009) G. E. Dialynas, Int. Jour.l of Nanotechnology 6, 124 (2009) S. I. Tsintzos, Nature 453, 372 (2008) Selected Publications

Ultrafast Lab

Polaritons are Bosons - Bose condensation - stimulated scattering Strong-coupling provides a new insight into a number of very interesting fundamental physical processes New Physics & Applications FORTH Microelectronics Research Group Univ. of Crete - ultralow threshold polariton lasers - all optical switches and amplifiers Polariton vs Photon Laser Deng, et al. Natl. Acad. Sci (2003)