Chapter Twenty-Seven Oligopoly. u A monopoly is an industry consisting a single firm. u A duopoly is an industry consisting of two firms. u An oligopoly.

Slides:



Advertisements
Similar presentations
Strategic Pricing: Theory, Practice and Policy Professor John W. Mayo
Advertisements

The World of Oligopoly: Preliminaries to Successful Entry
Market Institutions: Oligopoly
Chapter Twenty-Seven Oligopoly. u A monopoly is an industry consisting a single firm. u A duopoly is an industry consisting of two firms. u An oligopoly.
© 2009 Pearson Education Canada 16/1 Chapter 16 Game Theory and Oligopoly.
Static Games and Cournot Competition
Cournot versus Stackelberg n Cournot duopoly (simultaneous quantity competition) n Stackelberg duopoly (sequential quantity competition) x2x2 x1x1 x1x2x1x2.
Managerial Economics & Business Strategy
Chapter 12 Oligopoly. Chapter 122 Oligopoly – Characteristics Small number of firms Product differentiation may or may not exist Barriers to entry.
Monopolistic Competition and Oligopoly
Oligopoly Fun and games. Oligopoly An oligopolist is one of a small number of producers in an industry. The industry is an oligopoly.  All oligopolists.
Michael R. Baye, Managerial Economics and Business Strategy, 3e. ©The McGraw-Hill Companies, Inc., 1999 Managerial Economics & Business Strategy Chapter.
1 Welcome to EC 209: Managerial Economics- Group A By: Dr. Jacqueline Khorassani Week Ten.
Copyright © 2010 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Managerial Economics & Business Strategy Chapter 9 Basic Oligopoly.
© 2005 Pearson Education Canada Inc Chapter 16 Game Theory and Oligopoly.
Basic Oligopoly Models
Chapter 12 Monopolistic Competition and Oligopoly.
Finance 30210: Managerial Economics Strategic Pricing Techniques.
CHAPTER 9 Basic Oligopoly Models Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written.
18. Oligopoly Varian, Chapter 27.
Managerial Economics & Business Strategy Chapter 9 Basic Oligopoly Models.
Static Games and Cournot Competition
Managerial Economics & Business Strategy Chapter 9 Basic Oligopoly Models.
Source: Perloff. Some parts: © 2004 Pearson Addison- Wesley. All rights reserved Oligopoly Perloff Chapter 13.
Figure 12.1 Perfect Price Discrimination
© 2010 W. W. Norton & Company, Inc. 27 Oligopoly.
Managerial Economics & Business Strategy
1 Oligopoly. 2 By the end of this Section, you should be able to: Describe the characteristics of an oligopoly Describe the characteristics of an oligopoly.
Oligopoly Chapter 16. Imperfect Competition Imperfect competition includes industries in which firms have competitors but do not face so much competition.
David Bryce © Adapted from Baye © 2002 Power of Rivalry: Economics of Competition and Profits MANEC 387 Economics of Strategy MANEC 387 Economics.
Chapter 9: Static Games and Cournot Competition 1 Static Games and Cournot Competition.
CHAPTER 12 Imperfect Competition. The profit-maximizing output for the monopoly 2 If there are no other market entrants, the entrepreneur can earn monopoly.
Oligopoly. Structure Assume Duopoly Firms know information about market demand Perfect Information.
Lecture 12Slide 1 Topics to be Discussed Oligopoly Price Competition Competition Versus Collusion: The Prisoners’ Dilemma.
Roadmap: So far, we’ve looked at two polar cases in market structure spectrum: Competition Monopoly Many firms, each one “small” relative to industry;
Chapter Twenty-Seven Oligopoly. u A monopoly is an industry consisting a single firm. u A duopoly is an industry consisting of two firms. u An oligopoly.
ECON 201 Oligopolies & Game Theory 1. 2 An Economic Application of Game Theory: the Kinked-Demand Curve Above the kink, demand is relatively elastic because.
Oligopolies & Game Theory
Chapter 11 The World of Oligopoly: Preliminaries to Successful Entry.
Chapter 6 Extensive Form Games With Perfect Information (Illustrations)
Microeconomics I Undergraduate Programs Fernando Branco Second Semester Sessions 8 and 9.
Extensive Form Games With Perfect Information (Illustrations)
Chapter 26 Oligopoly, mainly Duopoly. Quantity or price competitions. Sequential games. Backward solution. Identical products: p = p (Y ), Y = y 1 + y.
CHAPTER 27 OLIGOPOLY.
Oligopoly 寡头垄断.  A monopoly is an industry consisting a single firm.  A duopoly is an industry consisting of two firms.  An oligopoly is an industry.
Monopolistic competition and Oligopoly
Chapters 13 & 14: Imperfect Competition & Game Theory
L22 Oligopoly. Market structure Market structures: u Oligopoly – industry with 2 or more large sellers. u Intermediate level of fixed cost u Have market.
Chapter 28 Oligopoly It is the case that lies between two extremes (pure competition and pure monopoly). Often there are a number of competitors but not.
Chapter 27 Oligopoly. Oligopoly A monopoly is an industry consisting a single firm. A duopoly is an industry consisting of two firms. An oligopoly is.
Oligopoly Overheads. Market Structure Market structure refers to all characteristics of a market that influence the behavior of buyers and sellers, when.
David Bryce © Adapted from Baye © 2002 Power of Rivalry: Economics of Competition and Profits MANEC 387 Economics of Strategy MANEC 387 Economics.
Lecture 6 Oligopoly 1. 2 Introduction A monopoly does not have to worry about how rivals will react to its action simply because there are no rivals.
Microeconomics 1000 Lecture 13 Oligopoly.
L21 Oligopoly.
Oligopolies & Game Theory
27 Oligopoly.
Chapter 16: Oligopoly.
Chapter 28 Oligopoly.
L21 Oligopoly.
Molly W. Dahl Georgetown University Econ 101 – Spring 2009
CHAPTER 12 OUTLINE Monopolistic Competition Oligopoly Price Competition Competition versus Collusion: The Prisoners’ Dilemma 12.5.
Oligopolies & Game Theory
L21 Oligopoly.
CHAPTER 10 Oligopoly.
L22 Oligopoly.
L22 Oligopoly.
L22 Oligopoly.
Chapter Twenty-Seven Oligopoly.
L22 Oligopoly.
Presentation transcript:

Chapter Twenty-Seven Oligopoly

u A monopoly is an industry consisting a single firm. u A duopoly is an industry consisting of two firms. u An oligopoly is an industry consisting of a few firms. Particularly, each firm’s own price or output decisions affect its competitors’ profits.

Oligopoly u How do we analyze markets in which the supplying industry is oligopolistic? u Consider the duopolistic case of two firms supplying the same product.

Quantity Competition u Assume that firms compete by choosing output levels. u If firm 1 produces y 1 units and firm 2 produces y 2 units then total quantity supplied is y 1 + y 2. The market price will be p(y 1 + y 2 ). u The firms’ total cost functions are c 1 (y 1 ) and c 2 (y 2 ).

Quantity Competition u Suppose firm 1 takes firm 2’s output level choice y 2 as given. Then firm 1 sees its profit function as u Given y 2, what output level y 1 maximizes firm 1’s profit?

Quantity Competition; An Example u Suppose that the market inverse demand function is and that the firms’ total cost functions are and

Quantity Competition; An Example Then, for given y 2, firm 1’s profit function is So, given y 2, firm 1’s profit-maximizing output level solves I.e. firm 1’s best response to y 2 is

Quantity Competition; An Example y2y2 y1y Firm 1’s “reaction curve”

Quantity Competition; An Example Similarly, given y 1, firm 2’s profit function is So, given y 1, firm 2’s profit-maximizing output level solves I.e. firm 1’s best response to y 2 is

Quantity Competition; An Example y2y2 y1y1 Firm 2’s “reaction curve” 45/4 45

Quantity Competition; An Example u An equilibrium is when each firm’s output level is a best response to the other firm’s output level, for then neither wants to deviate from its output level. u A pair of output levels (y 1 *,y 2 *) is a Cournot-Nash equilibrium if and

Quantity Competition; An Example y2y2 y1y1 Firm 2’s “reaction curve” Firm 1’s “reaction curve” 8 13 Cournot-Nash equilibrium

Iso-Profit Curves  For firm 1, an iso-profit curve contains all the output pairs (y 1,y 2 ) giving firm 1 the same profit level  1. u What do iso-profit curves look like?

y2y2 y1y1 Iso-Profit Curves for Firm 1 With y 1 fixed, firm 1’s profit increases as y 2 decreases.

y2y2 y1y1 Increasing profit for firm 1. Iso-Profit Curves for Firm 1

y2y2 y1y1 Q: Firm 2 chooses y 2 = y 2 ’. Where along the line y 2 = y 2 ’ is the output level that maximizes firm 1’s profit? y2’y2’

y2y2 y1y1 Iso-Profit Curves for Firm 1 Q: Firm 2 chooses y 2 = y 2 ’. Where along the line y 2 = y 2 ’ is the output level that maximizes firm 1’s profit? A: The point attaining the highest iso-profit curve for firm 1. y 1 ’ is firm 1’s best response to y 2 = y 2 ’. y2’y2’ y1’y1’

y2y2 y1y1 Iso-Profit Curves for Firm 1 Q: Firm 2 chooses y 2 = y 2 ’. Where along the line y 2 = y 2 ’ is the output level that maximizes firm 1’s profit? A: The point attaining the highest iso-profit curve for firm 1. y 1 ’ is firm 1’s best response to y 2 = y 2 ’. y2’y2’ R 1 (y 2 ’)

y2y2 y1y1 y2’y2’ y2”y2” R 1 (y 2 ”) Iso-Profit Curves for Firm 1

y2y2 y1y1 y2’y2’ y2”y2” R 1 (y 2 ”) R 1 (y 2 ’) Firm 1’s reaction curve passes through the “tops” of firm 1’s iso-profit curves. Iso-Profit Curves for Firm 1

y2y2 y1y1 Iso-Profit Curves for Firm 2 Increasing profit for firm 2.

y2y2 y1y1 Iso-Profit Curves for Firm 2 Firm 2’s reaction curve passes through the “tops” of firm 2’s iso-profit curves. y 2 = R 2 (y 1 )

Collusion u Q: Are the Cournot-Nash equilibrium profits the largest that the firms can earn in total?

Collusion y2y2 y1y1 y1*y1* y2*y2* Are there other output level pairs (y 1,y 2 ) that give higher profits to both firms? (y 1 *,y 2 *) is the Cournot-Nash equilibrium.

Collusion y2y2 y1y1 y1*y1* y2*y2* Are there other output level pairs (y 1,y 2 ) that give higher profits to both firms? (y 1 *,y 2 *) is the Cournot-Nash equilibrium.

Collusion y2y2 y1y1 y1*y1* y2*y2* Are there other output level pairs (y 1,y 2 ) that give higher profits to both firms? (y 1 *,y 2 *) is the Cournot-Nash equilibrium.

Collusion y2y2 y1y1 y1*y1* y2*y2* (y 1 *,y 2 *) is the Cournot-Nash equilibrium. Higher  2 Higher  1

Collusion y2y2 y1y1 y1*y1* y2*y2* Higher  2 Higher  1 y2’y2’ y1’y1’

Collusion y2y2 y1y1 y1*y1* y2*y2* y2’y2’ y1’y1’ Higher  2 Higher  1 (y 1 ’,y 2 ’) earns higher profits for both firms than does (y 1 *,y 2 *).

Collusion u So there are profit incentives for both firms to “cooperate” by lowering their output levels. u This is collusion. u Firms that collude are said to have formed a cartel. u If firms form a cartel, how should they do it?

Collusion u Is such a cartel stable? u Does one firm have an incentive to cheat on the other? u I.e. if firm 1 continues to produce y 1 m units, is it profit-maximizing for firm 2 to continue to produce y 2 m units?

Collusion u Firm 2’s profit-maximizing response to y 1 = y 1 m is y 2 = R 2 (y 1 m ).

Collusion y2y2 y1y1 y2my2m y1my1m y 2 = R 2 (y 1 m ) is firm 2’s best response to firm 1 choosing y 1 = y 1 m. R 2 (y 1 m ) y 1 = R 1 (y 2 ), firm 1’s reaction curve y 2 = R 2 (y 1 ), firm 2’s reaction curve

Collusion u Firm 2’s profit-maximizing response to y 1 = y 1 m is y 2 = R 2 (y 1 m ) > y 2 m. u Firm 2’s profit increases if it cheats on firm 1 by increasing its output level from y 2 m to R 2 (y 1 m ).

Collusion u Similarly, firm 1’s profit increases if it cheats on firm 2 by increasing its output level from y 1 m to R 1 (y 2 m ).

Collusion u So a profit-seeking cartel in which firms cooperatively set their output levels is fundamentally unstable. u E.g. OPEC’s broken agreements.

The Order of Play u So far it has been assumed that firms choose their output levels simultaneously. u The competition between the firms is then a simultaneous play game in which the output levels are the strategic variables.

The Order of Play u What if firm 1 chooses its output level first and then firm 2 responds to this choice? u Firm 1 is then a leader. Firm 2 is a follower. u The competition is a sequential game in which the output levels are the strategic variables.

The Order of Play u Such games are von Stackelberg games. u Is it better to be the leader? u Or is it better to be the follower?

Stackelberg Games u Q: What is the best response that follower firm 2 can make to the choice y 1 already made by the leader, firm 1?

Stackelberg Games u Q: What is the best response that follower firm 2 can make to the choice y 1 already made by the leader, firm 1? u A: Choose y 2 = R 2 (y 1 ).

Stackelberg Games u Q: What is the best response that follower firm 2 can make to the choice y 1 already made by the leader, firm 1? u A: Choose y 2 = R 2 (y 1 ). u Firm 1 knows this and so perfectly anticipates firm 2’s reaction to any y 1 chosen by firm 1.

Price Competition u What if firms compete using only price-setting strategies, instead of using only quantity-setting strategies? u Games in which firms use only price strategies and play simultaneously are Bertrand games.

Bertrand Games u Each firm’s marginal production cost is constant at c. u All firms set their prices simultaneously. u Q: Is there a Nash equilibrium?

Bertrand Games u Each firm’s marginal production cost is constant at c. u All firms simultaneously set their prices. u Q: Is there a Nash equilibrium? u A: Yes. Exactly one. All firms set their prices equal to the marginal cost c. Why?

Bertrand Games u Suppose one firm sets its price higher than another firm’s price. u Then the higher-priced firm would have no customers. u Hence, at an equilibrium, all firms must set the same price.

Bertrand Games u Suppose the common price set by all firm is higher than marginal cost c. u Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit. u The only common price which prevents undercutting is c. Hence this is the only Nash equilibrium.

Sequential Price Games u What if, instead of simultaneous play in pricing strategies, one firm decides its price ahead of the others. u This is a sequential game in pricing strategies called a price-leadership game. u The firm which sets its price ahead of the other firms is the price-leader.

Sequential Price Games u Think of one large firm (the leader) and many competitive small firms (the followers). u The small firms are price-takers and so their collective supply reaction to a market price p is their aggregate supply function Y f (p).

Sequential Price Games u The market demand function is D(p). u So the leader knows that if it sets a price p the quantity demanded from it will be the residual demand u Hence the leader’s profit function is

Sequential Price Games u The leader’s profit function is so the leader chooses the price level p* for which profit is maximized. u The followers collectively supply Y f (p*) units and the leader supplies the residual quantity D(p*) - Y f (p*).