1 Finding “Narrow Passages” with Probabilistic Roadmaps: The Small-Step Retraction Method Mitul Saha and Jean-Claude Latombe Research supported by NSF,

Slides:



Advertisements
Similar presentations
Probabilistic Roadmaps. The complexity of the robot’s free space is overwhelming.
Advertisements

PRM and Multi-Space Planning Problems : How to handle many motion planning queries? Jean-Claude Latombe Computer Science Department Stanford University.
Sampling Techniques for Probabilistic Roadmap Planners
By Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, Mark H. Overmars Emre Dirican
NUS CS5247 The Gaussian Sampling Strategy for Probalistic Roadmap Planners Valdrie Boor, Mark H. Overmars, A. Frank van der Stappen, 1999 Wai.
Sampling Strategies for PRMs modified from slides of T.V.N. Sri Ram.
Sampling Strategies By David Johnson. Probabilistic Roadmaps (PRM) [Kavraki, Svetska, Latombe, Overmars, 1996] start configuration goal configuration.
Presented By: Aninoy Mahapatra
Probabilistic Roadmap
A Comparative Study of Probabilistic Roadmap Planners Roland Geraerts Mark Overmars.
Probabilistic Roadmap Methods (PRMs)
Randomized Motion Planning for Car-like Robots with C-PRM Guang Song and Nancy M. Amato Department of Computer Science Texas A&M University College Station,
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University.
1 Last lecture  Configuration Space Free-Space and C-Space Obstacles Minkowski Sums.
David Hsu, Robert Kindel, Jean- Claude Latombe, Stephen Rock Presented by: Haomiao Huang Vijay Pradeep Randomized Kinodynamic Motion Planning with Moving.
1 On the Probabilistic Foundations of Probabilistic Roadmaps Jean-Claude Latombe Stanford University joint work with David Hsu and Hanna Kurniawati National.
Sampling Strategies for Narrow Passages Presented by Rahul Biswas April 21, 2003 CS326A: Motion Planning.
CS 326 A: Motion Planning Probabilistic Roadmaps Basic Techniques.
“Visibility-based Probabilistic Roadmaps for Motion Planning” Siméon, Laumond, Nissoux Presentation by: Eric Ng CS326A: Paper Review Spring 2003.
Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method Presented by: Deborah Meduna and Michael Vitus by: Saha, Latombe,
1 Probabilistic Roadmaps CS 326A: Motion Planning.
Motion Planning: A Journey of Robots, Digital Actors, Molecules and Other Artifacts Jean-Claude Latombe Computer Science Department Stanford University.
1 Single Robot Motion Planning - II Liang-Jun Zhang COMP Sep 24, 2008.
Adaptive Dynamic Collision Checking for Many Moving Bodies Mitul Saha Department of Computer Science, Stanford University. NSF-ITR Workshop Collaborators:
On Delaying Collision Checking in PRM Planning G. Sánchez and J. Latombe presented by Niloy J. Mitra.
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Sampling Strategies.
On Delaying Collision Checking in PRM Planning--Application to Multi-Robot Coordination Gildardo Sanchez & Jean-Claude Latombe Presented by Chris Varma.
1 On the Probabilistic Foundations of Probabilistic Roadmaps D. Hsu, J.C. Latombe, H. Kurniawati. On the Probabilistic Foundations of Probabilistic Roadmap.
Randomized Motion Planning
Sampling Strategies for Narrow Passages Presented by Irena Pashchenko CS326A, Winter 2004.
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Basic Techniques.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Kavraki, Svestka, Latombe, Overmars 1996 Presented by Dongkyu, Choi.
Exact Collision Checking of Robot Paths Fabian Schwarzer Mitul Saha Jean-Claude Latombe Computer Science Department Stanford University.
Laboratory for Perceptual Robotics – Department of Computer Science Whole-Body Collision-Free Motion Planning Brendan Burns Laboratory for Perceptual Robotics.
CS 326 A: Motion Planning Probabilistic Roadmaps Sampling and Connection Strategies.
On Delaying Collision Checking in PRM Planning Gilardo Sánchez and Jean-Claude Latombe January 2002 Presented by Randall Schuh 2003 April 23.
1 Path Planning in Expansive C-Spaces D. HsuJ. –C. LatombeR. Motwani Prepared for CS326A, Spring 2003 By Xiaoshan (Shan) Pan.
Sampling Strategies for Probabilistic Roadmaps Random Sampling for capturing the connectivity of the C-space:
NUS CS 5247 David Hsu1 Last lecture  Multiple-query PRM  Lazy PRM (single-query PRM)
Randomized Motion Planning for Car-like Robots with C-PRM Guang Song, Nancy M. Amato Department of Computer Science Texas A&M University College Station,
A General Framework for Sampling on the Medial Axis of the Free Space Jyh-Ming Lien, Shawna Thomas, Nancy Amato {neilien,
Path Planning in Expansive C-Spaces D. HsuJ.-C. LatombeR. Motwani CS Dept., Stanford University, 1997.
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University Abridged and Modified Version (D.H.)
Workspace-based Connectivity Oracle An Adaptive Sampling Strategy for PRM Planning Hanna Kurniawati and David Hsu Presented by Nicolas Lee and Stephen.
Spring 2007 Motion Planning in Virtual Environments Dan Halperin Yesha Sivan TA: Alon Shalita Basics of Motion Planning (D.H.)
CS 326A: Motion Planning Probabilistic Roadmaps: Sampling and Connection Strategies.
CS 326 A: Motion Planning Probabilistic Roadmaps Basic Techniques.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Kavraki, Svestka, Latombe, Overmars 1996 Presented by Chris Allocco.
Motion Planning for Robotic Manipulation of Deformable Linear Objects (DLOs) Mitul Saha, Pekka Isto, and Jean-Claude Latombe Research supported by NSF,
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Lydia E. Kavraki Petr Švetka Jean-Claude Latombe Mark H. Overmars Presented.
A Randomized Approach to Robot Path Planning Based on Lazy Evaluation Robert Bohlin, Lydia E. Kavraki (2001) Presented by: Robbie Paolini.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars.
Narrow Passage Problem in PRM Amirhossein Habibian Robotic Lab, University of Tehran Advanced Robotic Presentation.
On Delaying Collision Checking in PRM Planning – Application to Multi-Robot Coordination By: Gildardo Sanchez and Jean-Claude Latombe Presented by: Michael.
Deterministic Sampling Methods for Spheres and SO(3) Anna Yershova Steven M. LaValle Dept. of Computer Science University of Illinois Urbana, IL, USA.
Sampling-Based Planners. The complexity of the robot’s free space is overwhelming.
NUS CS 5247 David Hsu Sampling Narrow Passages. NUS CS 5247 David Hsu2 Narrow passages.
Filtering Sampling Strategies: Gaussian Sampling and Bridge Test Valerie Boor, Mark H. Overmars and A. Frank van der Stappen Presented by Qi-xing Huang.
Lecture 4: Improving the Quality of Motion Paths Software Workshop: High-Quality Motion Paths for Robots (and Other Creatures) TAs: Barak Raveh,
Motion Planning CS121 – Winter Basic Problem Are two given points connected by a path?
CS 326A: Motion Planning Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe,
Artificial Intelligence Lab
Last lecture Configuration Space Free-Space and C-Space Obstacles
Probabilistic Roadmap Motion Planners
Presented By: Aninoy Mahapatra
Algorithmic Robotics Lab Seminar
Sampling and Connection Strategies for Probabilistic Roadmaps
Path Planning using Ant Colony Optimisation
Motion Planning CS121 – Winter 2003 Motion Planning.
Configuration Space of an Articulated Robot
Presentation transcript:

1 Finding “Narrow Passages” with Probabilistic Roadmaps: The Small-Step Retraction Method Mitul Saha and Jean-Claude Latombe Research supported by NSF, ABB and GM Artificial Intelligence Lab Stanford University

2 Probabilistic Roadmaps (PRM) [Kavraki, Svetska, Latombe, Overmars, 1996] start configuration goal configuration free-space c-obstacle Configuration-space components milestone local path Roadmap components

3 PRM planners solve complicated problems Complex geometries: obstacles: polygons Robot: 4053 polygons High dimensional

4 Main Issue: “Narrow Passages” free samples colliding samples colliding local path narrow passage low density of free samples high density of free samples The efficiency of PRM planners drops dramatically in spaces with narrow passages

5 Problems with “narrow passages” are commonly encountered Main Issue: “Narrow Passages”

6 ? Proposed strategies:  Filtering strategies, e.g., Gaussian sampling [Boor et al. ‘99] and bridge test [Hsu et al. ‘03]  rely heavily on rejection sampling  Retraction strategies, e.g., [Wilmart et al. ‘99][Lien et al. ‘03]  waste time moving many configurations out of collision

7 Motivating Observation decreasing width of the narrow passage planning time easy narrow passages difficult narrow passages

8 Roadmap construction and repair fattened free space widened passage Fattening free space c-obstacle start goal Small-Step Retraction Method 1.Slightly fatten the robot’s free space 2.Construct a roadmap in fattened free space 3.Repair the roadmap into original free space (1) (2 & 3)

9 Small-Step Retraction Method Roadmap construction and repair fattened free space widened passage Fattening free space c-obstacle start goal -Free space can be “indirectly” fattened by reducing the scale of the geometries (usually of the robot) in the 3D workcell with respect to their medial axis -This can be pushed into the pre-processing phase

10 Small-Step Retraction Method Roadmap construction and repair fattened free space widened passage Fattening free space c-obstacle start goal Repair during construction Repair after construction goal Pessimist Strategy Optimist Strategy fattened free space start

11 Small-Step Retraction Method Roadmap construction and repair fattened free space widened passage Fattening free space c-obstacle start goal Repair during construction Repair after construction fattened free space goal Pessimist Strategy Optimist Strategy - Optimist may fail due to “false passages” but Pessimist is probabilistically complete - Hence Optimist is less reliable, but much faster due to its lazy strategy start

12 Small-Step Retraction Method Roadmap construction and repair fattened free space widened passage Fattening free space c-obstacle start goal Repair during construction Repair after construction goal Pessimist Strategy Optimist Strategy  Integrated planner: 1. Try Optimist for N time. 2. If Optimist fails, then run Pessimist fattened free space start

13 Quantitative Results Fattening “preserves” topology/ connectivity of the free space Fattening “alters” the topology/ connectivity of the free space Time SSRP (secs) Time SBL (secs) (a) (b) (c)2.141 (d) (e)65631 (f)13588> Time SSRP (secs) Time SBL (secs) (g) (h)3365> (a) (b) (c) (d) (e) (f) (g) (h) Alpha 1.0 Alpha 1.1 Upto 3 orders of magnitude improvement in the planning time was observed Our planner A recent PRM planner

14 Quantitative Results Test environments “without” narrow passages –SSRP and SBL have similar performance Time SSRP Time SBL (i) (j) (i) (j)

15 Conclusion SSRP is very efficient at finding narrow passages and still works well when there is none The main drawback is that there is an additional pre-computation step

16 Finding “Narrow Passages” with Probabilistic Roadmaps: The Small-Step Retraction Method