X-ray Absorption Spectroscopy of the Multi-Phase Interstellar Medium: O & Ne Abundances Astro-ph:0512486 Yangsen Yao Q.Daniel Wang.

Slides:



Advertisements
Similar presentations
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Advertisements

Feedback: in the form of outflow. AGN driven outflow.
X Y i M82 Blue: Chandra Red: Spitzer Green & Orange: Hubble Face-on i = 0 Edge-on i = 90 Absorption-line probes of the prevalence and properties of outflows.
[SII] Observations and what they can tell us Snippets of possibly useful stuff by Lesa Moore 31 st October 2012.
RGS spectroscopy of the Crab nebula Jelle S. Kaastra Cor de Vries, Elisa Costantini, Jan-Willem den Herder SRON.
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
The Abundance of Free Oxygen Atoms in the Local ISM from Absorption Lines Edward B. Jenkins Princeton University Observatory.
General Astronomy The Interstellar Medium Credits: Much of this slideset is modified from lectures by Dr. Peter Newbury (UBC)
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Searching for the large-scale hot gaseous Galactic halo --Observations confront theories Yangsen Yao in collaboration with Michael A. Nowak Q. Daniel Wang.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
How Do Supermassive Black Holes Get Starved? Q. D. Wang, Z. Y. Li, S.-K. Tang University of Massachusetts B. Wakker University of Wisconsin.
IRAC 8 micro K-band keV X-ray Emission Line Spectroscopy of Diffuse Hot Plasma XMM-Newton RGS Liu, Wang, Li, & Peterson 2010 Li & Wan 2007 T ~ 3.
AMD Absorption Measure Distribution Evidence for Thermal Instability? By Tomer Holczer Cambridge, MA July 2007.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Jonathan Slavin Harvard-Smithsonian CfA
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 18.
The HETGS view of the micro-quasar GRS Lee et al. 2002, ApJ., 567, 1102 COLLABORATORS : C.S. Reynolds (U. Maryland) R.A Remillard (MIT) N.S. Schulz.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
The Interstellar Medium. I. Visible-Wavelength Observations A. Nebulae B. Extinction and Reddening C. Interstellar Absorption Lines II. Long- and Short-Wavelength.
The ionization structure of the wind in NGC 5548
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Brittany Griner Robin McCollum INTERSTELLAR MEDIUM.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
High-Resolution X-ray Spectroscopy of the Accreting Weak-Line T Tauri Star DoAr 21 Victoria Swisher, Eric L. N. Jensen, David H. Cohen (Swarthmore College),
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
The Interstellar Medium
X-ray Spectroscopy of Cool & Warm Absorbers With Chandra: From Oxygen to iron X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA Norbert S. Schulz.
Diagnosing the Shock from Accretion onto a Young Star Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Collaborators: Steve Cranmer, Moritz.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Quiz 3 Briefly explain how a low-mass star becomes hot enough to settle on the main-sequence. Describe what is solar weather and list two ways in which.
Collisional Ionization and Doppler Lines in the Ultra-compact Binary 4U years or X-ray Binaries, Chandra Workshop, July 10-12, 2012, Boston MA.
Photoionization Tim Kallman NASA/GSFC What is photoionization? Removal of a bound electron by a photon Loosely refers to any situation where external photons.
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-32.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
X - R AY D IAGNOSTICS of G RAIN D EPLETION in M ATTER A CCRETING onto T T AURI S TARS Jeremy Drake (SAO), Paola Testa (MIT), Lee Hartman (SAO) Ne/O D IAGNOSTICS.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
Junfeng Wang, G. Fabbiano, G. Risaliti, M. Elvis, M. Karovska, A. Zezas (Harvard-CfA/SAO), C. G. Mundell (Liverpool John Moores University, UK), G. Dumas,
Introduction KU-4/2007 The ISM K.D.Kuntz The Henry A. Rowland Department of Physics and Astronomy The Johns Hopkins University (Diffuse Emission in Galaxies)
X-ray study of a nearby nuclear X-ray study of a nearby nuclear starburst and a nearby AGN starburst and a nearby AGN Roberto Soria (UCL) Mat Page, Kinwah.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
The Chandra view of Mrk 279 Elisa Costantini SRON, National Institute for Space Research Astronomical Institute Utrecht.
Star Formation and H2 in Damped Lya Clouds
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research Probing interstellar dust through X-ray spectroscopy C. Pinto *, J. S. Kaastra * †, E. Costantini *, F.
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Excitation of H2 in NGC 253 Marissa Rosenberg
Presentation transcript:

X-ray Absorption Spectroscopy of the Multi-Phase Interstellar Medium: O & Ne Abundances Astro-ph: Yangsen Yao Q.Daniel Wang

1.Importance : Stars  SNe  Metal of ISM  Stars  SNe  …… a. The abundance in the ISM and stars provides constraints on the physical processes involved in SF & evolution. b. Heating  dust grain in the ISM  Cooling c. Observational data =?= Theory model interpretation

2. Question: a. Complex forms: atomic, molecular and solid dust grain; b. Complex states: cold(<100K), warm(~8000k), photo-ionized hot (1E6 K), collisionally ionized c. Depletion from condensation Enrichment from destruction

d. Optical & UV  cold/warm phases; (The model of the physical and ionization conditions) e. Stellar abundance measurement: (C,N,O of solar-like stars : downward 25%~45%, Asplund et al. 2005) f. Ne/O >2.5 or no such high Ne/O ratio(Drake& Testa 2005; Schmelz et al. 2005)

3. X-ray absorption spectroscopy: a. K- and L-transitions of carbon to iron b. Less affected by extinction  probe larger column densities c. Ne/O ratio & the absolute abundance of O/H (Takei et al. 2002; McCray & Snow 2004) d. XMMS-Newton & Chandra

4. Data: LMXB, 4U : P-orb = 685s l,b=(2.79d,-7.91) & D~7.6 Kpc Ne~2.7*10E20 cm-2 LMXB  serious stellar contamination LETG (Brinkman et al.2000,15ks), OII HETG (Cabizares et al. 2005, 9.7ks), NeIX ACIS (Cabizares et al. 2005, 10.9ks), NeIX

CIAO and CALDB Source spectra: rebin MEG+LETG(1st-6th grating) Continuum: BB + BKNPL +10 broad Gaussians N(H)~2.0*E21 cm-2

5. Result:

Abslin model: the line centroid; velocity dispersion; column density; temperature; Metal abundance;

Cold + Warm gas: N(OI+OII+OIII)=0.75(0.48,1.22)*E18 cm-2 N(Ne)=2.3(1.9,2.7)*E18 cm-2  (Ne/O)=0.3(0.2,0.5) or 2.1(1.3,3.5) solar Hot Phase:

Local Bubble (~1E6K)  3/4 keV Galactic bulge  enhance X-ray

21 cm: N(HI)=1.5*E21 cm-2 E(B-V)~0.32  N(HI)+N(H2)~1.9*E21 cm-2

6. Conclusions: a. The Column densities of OI, OII, OIII  Cold (neutral) O abundance of 0.3 solar. Warm O abundance of 2.0 solar. b. Ne abundance of 1.2 solar and Ne/O~2.1, consider compound ISM  ~1.5 lower c. Hot gas: Ne/O~1.4 solar, which is insensitive to the exact temperature distribution assumed. d. Atomic phases abundance from x-ray measure: Ne/O ratios < emission line from stars.

An Overview of Extremely Large Telescopes Projects Astro-ph/ R. G. Carlberg

1. The Giant Magellan Telescope:

2. The Thirty Meter Telescope: , US$700M

3. The Euro-50 Project: 1990-

4. The Overwhelmingly Large Telescope Project: 1,250M Euro