2: Application Layer1 Data Communication and Networks Lecture 12 Java Sockets November 30, 2006.

Slides:



Advertisements
Similar presentations
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r Sockets are explicitly created, used, released by applications.
Advertisements

Network Programming and Java Sockets
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
2: Application Layer 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
9/23/2003-9/25/2003 Sockets & DNS September 23-25, 2003.
Chapter 3: Transport Layer
1 Creating a network app Write programs that  run on different end systems and  communicate over a network.  e.g., Web: Web server software communicates.
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
1 Overview r Socket programming with TCP r Socket programming with UDP r Building a Web server.
1 Review of Previous Lecture r Electronic Mail r DNS r P2P file sharing.
Internet and Intranet Protocols and Applications Lecture 4: Application Layer 3: Socket Programming February 8, 2005 Arthur Goldberg Computer Science Department.
Networking Overview February 2, /2/2004 Assignments Due – Homework 0 Due – Reading and Warmup questions Work on Homework 1.
2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim.
Socket programming with UDP and TCP. Socket Programming with TCP Connection oriented – Handshaking procedure Reliable byte-stream.
TCP Socket Programming CPSC 441 Department of Computer Science University of Calgary.
2: Application Layer1 Socket Programming. 2: Application Layer2 Socket-programming using TCP Socket: a door between application process and end- end-transport.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1 Network Layers Application Transport Network Data-Link Physical bits.
Protocols Rules for communicating between two entities (e.g., a client and a server) “A protocol definition specifies how distributed system elements interact.
2: Application Layer 1 Socket Programming Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
2: Application Layer 1 Socket Programming TCP and UDP.
JAVA Socket Programming Source: by Joonbok Lee, KAIST, 2003.
ECE5650: Network Programming
Socket programming in C. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
1 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
Review: –What is AS? –What is the routing algorithm in BGP? –How does it work? –Where is “policy” reflected in BGP (policy based routing)? –Give examples.
CS 3830 Day 11 Introduction : Application Layer 2 Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, u s = 10u, d min ≥ u s.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Winter 2002Suprakash Datta1 Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Associate Professor, Computer Science.
Socket Programming Lee, Sooyong
Network Programming and Sockets CPSC 363 Computer Networks Ellen Walker Hiram College (Includes figures from Computer Networking by Kurose & Ross, © Addison.
Socket Programming Tutorial. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
Transport Layer1 Ram Dantu (compiled from various text books)
CS 3830 Day 13 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due Wednesday, Oct 10 Transport Layer 3-2.
Java Socket programming. Socket programming with TCP.
NETWORK PROGRAMMING.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API Explicitly created, used, released by apps Client/server paradigm Two types of transport service via.
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
1 CSCD 330 Network Programming Spring 2014 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 7 Application.
Chapter 2 Application Layer Application 2-1. Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic.
1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
1 COMP 431 Internet Services & Protocols Client/Server Computing & Socket Programming Jasleen Kaur February 2, 2016.
1 CSCD 330 Network Programming Fall 2013 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 8a Application.
Socket programming in C. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 11 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 All rights reserved to Chun-Chuan Yang Upon completion you will be able to: The OSI Model and the TCP/IP Protocol Suite Understand the architecture of.
2: Application Layer1 Network applications: some jargon Process: program running within a host. r within same host, two processes communicate using interprocess.
Transport Layer3-1 Transport Layer Never take life seriously. Nobody gets out alive anyway.
Socket Programming Socket Programming Overview
DNS: Domain Name System
Socket programming with TCP
Chapter 2: outline 2.1 principles of network applications
Socket programming - Java
Socket Programming Socket Programming Overview
Socket Programming.
Socket Programming 2: Application Layer.
DNS: Domain Name System
CPSC 441 UDP Socket Programming
Chapter 2: Application layer
DNS: Domain Name System
DNS: Domain Name System
Socket Programming with UDP
Presentation transcript:

2: Application Layer1 Data Communication and Networks Lecture 12 Java Sockets November 30, 2006

2: Application Layer2 Internet transport-layer protocols r reliable, in-order delivery TCP m congestion control m flow control m connection setup r unreliable, unordered delivery: UDP m no-frills extension of “best-effort” IP r services not available: m delay guarantees m bandwidth guarantees application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical logical end-end transport

2: Application Layer3 Multiplexing/demultiplexing application transport network link physical P1 application transport network link physical application transport network link physical P2 P3 P4 P1 host 1 host 2 host 3 = process= socket delivering received segments to correct socket Demultiplexing at rcv host: gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) Multiplexing at send host:

2: Application Layer4 How demultiplexing works r host receives IP datagrams m each datagram has source IP address, destination IP address m each datagram carries 1 transport-layer segment m each segment has source, destination port number (recall: well-known port numbers for specific applications) r host uses IP addresses & port numbers to direct segment to appropriate socket source port #dest port # 32 bits application data (message) other header fields TCP/UDP segment format

2: Application Layer5 Connectionless demultiplexing r Create sockets with port numbers: DatagramSocket mySocket1 = new DatagramSocket(99111); DatagramSocket mySocket2 = new DatagramSocket(99222); r UDP socket identified by two-tuple: ( dest IP address, dest port number) r When host receives UDP segment: m checks destination port number in segment m directs UDP segment to socket with that port number r IP datagrams with different source IP addresses and/or source port numbers directed to same socket

2: Application Layer6 Connectionless demux (cont) DatagramSocket serverSocket = new DatagramSocket(6428); Client IP:B P2 client IP: A P1 P3 server IP: C SP: 6428 DP: 9157 SP: 9157 DP: 6428 SP: 6428 DP: 5775 SP: 5775 DP: 6428 SP provides “return address”

2: Application Layer7 Connection-oriented demux r TCP socket identified by 4-tuple: m source IP address m source port number m dest IP address m dest port number r recv host uses all four values to direct segment to appropriate socket r Server host may support many simultaneous TCP sockets: m each socket identified by its own 4-tuple r Web servers have different sockets for each connecting client m non-persistent HTTP will have different socket for each request

2: Application Layer8 Connection-oriented demux (cont) Client IP:B P1 client IP: A P1P2P4 server IP: C SP: 9157 DP: 80 SP: 9157 DP: 80 P5P6P3 D-IP:C S-IP: A D-IP:C S-IP: B SP: 5775 DP: 80 D-IP:C S-IP: B

2: Application Layer9 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of transport service via socket API: m unreliable datagram m reliable, byte stream- oriented a host-local, application-created, OS-controlled interface (a “door”) into which application process can both send and receive messages to/from another application process socket Goal: learn how to build client/server application that communicate using sockets

2: Application Layer10 Socket-programming using TCP Socket: a door between application process and end- end-transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server internet

2: Application Layer11 Socket programming with TCP Client must contact server r server process must first be running r server must have created socket (door) that welcomes client’s contact Client contacts server by: r creating client-local TCP socket r specifying IP address, port number of server process r When client creates socket: client TCP establishes connection to server TCP r When contacted by client, server TCP creates new socket for server process to communicate with client m allows server to talk with multiple clients m source port numbers used to distinguish clients (more in Chap 3) TCP provides reliable, in-order transfer of bytes (“pipe”) between client and server application viewpoint

2: Application Layer12 Stream jargon r A stream is a sequence of characters that flow into or out of a process. r An input stream is attached to some input source for the process, eg, keyboard or socket. r An output stream is attached to an output source, eg, monitor or socket.

2: Application Layer13 Socket programming with TCP Example client-server app: 1) client reads line from standard input ( inFromUser stream), sends to server via socket ( outToServer stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket ( inFromServer stream) Client process client TCP socket

2: Application Layer14 Client/server socket interaction: TCP wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket Server (running on hostid ) Client send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

2: Application Layer15 Example: Java client (TCP) import java.io.*; import java.net.*; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modifiedSentence; BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); Socket clientSocket = new Socket("hostname", 6789); DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream()); Create input stream Create client socket, connect to server Create output stream attached to socket

2: Application Layer16 Example: Java client (TCP), cont. BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = inFromUser.readLine(); outToServer.writeBytes(sentence + '\n'); modifiedSentence = inFromServer.readLine(); System.out.println ("FROM SERVER: " + modifiedSentence ); clientSocket.close(); } Create input stream attached to socket Send line to server Read line from server

2: Application Layer17 Example: Java server (TCP) import java.io.*; import java.net.*; class TCPServer { public static void main(String argv[]) throws Exception { String clientSentence; String capitalizedSentence; ServerSocket welcomeSocket = new ServerSocket(6789); while(true) { Socket connectionSocket = welcomeSocket.accept(); BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket

2: Application Layer18 Example: Java server (TCP), cont DataOutputStream outToClient = new DataOutputStream (connectionSocket.getOutputStream()); clientSentence = inFromClient.readLine(); capitalizedSentence = clientSentence.toUpperCase() + '\n'; outToClient.writeBytes(capitalizedSentence); } Read in line from socket Create output stream, attached to socket Write out line to socket End of while loop, loop back and wait for another client connection

2: Application Layer19 Socket programming with UDP UDP: no “connection” between client and server r no handshaking r sender explicitly attaches IP address and port of destination to each packet r server must extract IP address, port of sender from received packet UDP: transmitted data may be received out of order, or lost application viewpoint UDP provides unreliable transfer of groups of bytes (“datagrams”) between client and server

2: Application Layer20 Client/server socket interaction: UDP close clientSocket Server (running on hostid ) read reply from clientSocket create socket, clientSocket = DatagramSocket() Client Create, address ( hostid, port=x, send datagram request using clientSocket create socket, port= x, for incoming request: serverSocket = DatagramSocket() read request from serverSocket write reply to serverSocket specifying client host address, port number

2: Application Layer21 Example: Java client (UDP) Output: sends packet (TCP sent “byte stream”) Input: receives packet (TCP received “byte stream”) Client process client UDP socket

2: Application Layer22 Example: Java client (UDP) import java.io.*; import java.net.*; class UDPClient { public static void main(String args[]) throws Exception { BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); DatagramSocket clientSocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] sendData = new byte[1024]; byte[] receiveData = new byte[1024]; String sentence = inFromUser.readLine(); sendData = sentence.getBytes(); Create input stream Create client socket Translate hostname to IP address using DNS

2: Application Layer23 Example: Java client (UDP), cont. DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876); clientSocket.send(sendPacket); DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); clientSocket.receive(receivePacket); String modifiedSentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedSentence); clientSocket.close(); } Create datagram with data-to-send, length, IP addr, port Send datagram to server Read datagram from server

2: Application Layer24 Example: Java server (UDP) import java.io.*; import java.net.*; class UDPServer { public static void main(String args[]) throws Exception { DatagramSocket serverSocket = new DatagramSocket(9876); byte[] receiveData = new byte[1024]; byte[] sendData = new byte[1024]; while(true) { DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); serverSocket.receive(receivePacket); Create datagram socket at port 9876 Create space for received datagram Receive datagram

2: Application Layer25 Example: Java server (UDP), cont String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivePacket.getAddress(); int port = receivePacket.getPort(); String capitalizedSentence = sentence.toUpperCase(); sendData = capitalizedSentence.getBytes(); DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, port); serverSocket.send(sendPacket); } Get IP addr port #, of sender Write out datagram to socket End of while loop, loop back and wait for another datagram Create datagram to send to client