Star Formation in the Universe Robert Kennicutt Institute of Astronomy University of Cambridge.

Slides:



Advertisements
Similar presentations
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Advertisements

Elodie GIOVANNOLI Laboratoire d’Astrophysique de Marseille, FRANCE Advisor : Veronique BUAT Collaborators : Denis Burgarella, Stefan Noll Spectral energy.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
9/19/2014 Claus Leitherer: Lyman Continuum Leakage 1 Lyman Continuum Leakage in the Local Universe Claus Sanch Tim Janice Sally Roderik Leitherer Borthakur.
ASKAP Continuum Surveys of Local Galaxies Michael Brown ARC Future Fellow Monash University.
SINGS: Panchromatic Data and Star Formation in Nearby Galaxies Daniela Calzetti (UMass, Amherst) Gas Accretion and Star Formation in Galaxies, Garching.
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
STARBURSTS IN PERSPECTIVE: The Multiwavelength View of Star-Forming Galaxies Robert Kennicutt U. Arizona U. Cambridge.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Aging nearby spiral galaxies using H-alpha to UV flux ratios: Effect of model parameters Francesca von Braun-Bates.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
Demographics of Local Star-Forming Galaxies and Starbursts M82: Spitzer/CXO/HST.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
The Dwarf Starburst Galaxy NGC 1705 : New H II Region Element Abundances & Reddening Variations Near the Center NGC 1705 is a nearby dwarf starburst galaxy.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Background Slides from Lecture 1 Multi-Wavelength SFR Diagnostics (  m) HH PP 8  m 24  m70  m160  m UV [OII] `calorimetric’ IR.
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
Lisa Kewley (CfA) Margaret Geller (CfA) Rolf Jansen (ASU) Mike Dopita (RSAA)
Margaret Meixner (STScI, JHU) March 7, 2013
New Insight Into the Dust Content of Galaxies Based on the Analysis of the Optical Attenuation Curve.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
An Initial Look at the FIR-Radio Correlation within Galaxies using Spitzer Eric Murphy (Yale) Co-Investigators George Helou (SSC/IPAC) Robert Braun (ASTRON)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
THE FAR-INFRARED FIR = IRAS region ( micron) TIR = micron (1 micron = 1A/10^4) Silva et al Lambda (micron) Log λ L.
Effects of Dust on the Observed SEDs of Galaxies Andrew Schurer INAF/SISSA & MAGPOP.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) UC Riverside Astronomy Talk January 27, 2012.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
FRENEL Meeting, Nice, September 2009 FRESNEL Imager: Extragalactic Science in the UV-Optical domains Roser Pelló Laboratoire d’Astrophysique de Toulouse-Tarbes.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice Shapley, Crystal Martin, Alison Coil ETH Zurich February.
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
Is the Initial Mass Function universal? Morten Andersen, M. R. Meyer, J. Greissl, B. D. Oppenheimer, M. Kenworthy, D. McCarthy Steward Observatory, University.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
Spitzer Imaging of i`-drop Galaxies: Old Stars at z ≈ 6 Laurence P. Eyles 1, Andrew J. Bunker 1, Elizabeth R. Stanway 2, Mark Lacy 3, Richard S. Ellis.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Unraveling the Star Formation Scaling Laws in Galaxies (review + 2 new results) Robert Kennicutt Institute of Astronomy University of Cambridge M51: FUV,
A New Milestone in Starburst SED Modeling: Using 30 Doradus as a Benchmark Rafael Martínez-Galarza Leiden Observatory Brent Groves (Leiden/MPIA) Bernhard.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Recontres de Moriond XXV La Thuile, March 2005 Recontres de Moriond XXV La Thuile, March 2005 Theoretical SEDs in Starbursts: SFRs in both the UV and IR.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Starburst galaxies are important constituents of the universe at all accessible redshifts. However, a detailed and quantitative understanding of the starburst.
Constraints on a Universal IMF1 from the Entire Stellar Population2,3
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
8/18/2010 Claus Leitherer: Young Stellar Populations 1 Young Stellar Populations in the Ultraviolet Claus Leitherer (STScI)
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
A Survey of Starburst Galaxies An effort to help understand the starburst phenomenon and its importance to galaxy evolution Megan Sosey & Duilia deMello.
Are WE CORRECTLY Measuring the Star formation in galaxies?
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
Hugh H. Crowl UMass with Jeff Kenney (Yale)
The dust attenuation in the galaxy merger Mrk848
Looking forward to new telescopes and back to the dark ages
Presentation transcript:

Star Formation in the Universe Robert Kennicutt Institute of Astronomy University of Cambridge

Lectures 1. Diagnostics of Star Formation Rates 2. Demographics of Star-Forming Galaxies and Starbursts (Mon 1pm) 3. Nearby Galaxies as Revealed by the Spitzer Space Telescope (colloquium – Tues 4:15pm) 4. The Star Formation Law (next Thurs 1pm)

Motivations Observations of external galaxies reveal global and local star formation events ranging over >10 7 x in absolute scale--- over a far wider range of physical environments than can be found in the Milky Way Star formation is a primary component of galaxy evolution and cosmic evolution Despite its central role, galactic-scale SF as a physical process is barely understood

IR-luminous: ~5-8% circumnuclear: ~3-4% BCGs, ELGs: ~5-8% Contributions to the Global Star Formation Budget Total fraction ~10-20%

Hopkins 2004, ApJ, 615, 209

An Information Explosion advent of the mega-survey –SDSS, 2DF --> imaging, spectra for >>10 6 galaxies to z=0.5 GALEX –SFRs for 10 7 galaxies to z>1 –~10000 galaxies within 70 Mpc Spitzer –3 Legacy surveys + MIPS/IRS GTO starburst survey large H  surveys –SFR maps for >4000 galaxies ISM surveys –e.g., WHISP, THINGS, BIMA SONG --> ALMA, Herschel

Multi-Wavelength SFR Diagnostics (  m) HH PP 8  m 24  m70  m160  m UV [OII] `calorimetric’ IR Dale et al. 2007, ApJ, 655, 863

mag (A V )

GALEX FUV + NUV (1500/2500 A) IRAC 8.0  m MIPS 24  m H  + R

Spitzer Infrared Nearby Galaxies Survey (SINGS) complete IRAC, MIPS imaging of 75 nearby galaxies (3.5 – 160  m) IRS, MIPS radial strip maps (10 – 100  m) IRS maps of centers, 75 extranuclear sources (5–37  m) ancillary imaging campaign covering UV to radio Kennicutt et al. 2003, PASP, 115, 928

UV Continuum Emission

Ultraviolet stellar continuum: key advantages -direct photospheric measure of young massive stars -primary groundbased SFR tracer for galaxies at z>2 - However: -heavily attenuated by dust. Dust `correction’ methods have limits (age-dust degeneracy). -dependent on the stellar population mix, usually measures timescales of ~100 Myr. Dale et al. 2007, ApJ, 655, 863

GALEX Mission - all-sky survey - 5 arcsec resolution A, 2500 A to AB = ,000 galaxies to z= deep surveys to AB = 25.5, launched April 2003

Steidel et al. 1996, ApJ, 462, L17

Maeder, Meynet 1988, A&AS, 76, 411 Building an Evolutionary Synthesis Model Kurucz 1979, ApJS, 40, 1 + single star SED evolution model

Leitherer et al. 1999, ApJS, 123, 3 “Starburst99” “single burst models” “continuous star formation” models (single age star clusters)

apply evolutionary synthesis maodels to constrain IMF Kennicutt, Tamblyn, Congdon 1994, ApJ, 435, 22

UV, Dust, and Age Starbursts (Calzetti et al. 1994,1995,1996,1997,2000, Meurer et al. 1999, Goldader et al. 2002)  26 A dusty stellar population may have similar UV characteristics of an old population

 26 Blue= starbursts Red= normal SF

M51 Calzetti et al. 2005, ApJ, 633, 871 FUV, H , 24  m3.6, 4.5, 5.8, 8.0  m

Photoionization Methods: Emission Lines SINGG survey, G. Meurer et al. (NOAO) for ionization-bounded region observed recombination line flux scales with ionization rate ionization dominated by massive stars (M > 10 M o ), so nebular emission traces SFR in last 3-5 Myr ionizing UV reprocessed through few nebular lines, detectable to large distances only traces massive SFR, total rates sensitive to IMF extrapolation SFRs subject to systematic errors from extinction, escape of ionizing radiation from galaxy

Kennicutt 1992, ApJS, 79, 255

Local H  Surveys Survey N gal Selection PI GOLDMine 277 magnitude Coma/Virgo G. Gavazzi MOSAIC ~1000 H  Abell clusters R. Kennicutt H  GS 450 mag/volume field (<40 Mpc) P. James SINGG/SUNGG* 468 HIPASS field (<40 Mpc) G. Meurer STARFORM 150 volume field (<25 Mpc) S. Hameed 11HUGS *** 470 volume field (<11 Mpc) R. Kennicutt AMIGA ~270 magnitude isolated field L. Montenegro SINGS *** 75 multi-param <30 Mpc R. Kennicutt SMUDGES ~1000 mag field dwarfs L. van Zee UCM 376 obj prism field J. Gallego KISS ~2200 obj prism field J. Salzer ** paired GALEX survey

Photoionization Methods: Emission Lines SINGG survey, G. Meurer et al. (NOAO) for ionization-bounded region observed recombination line flux scales with ionization rate ionization dominated by massive stars (M > 10 M o ), so nebular emission traces SFR in last 3-5 Myr ionizing UV reprocessed through few nebular lines, detectable to large distances only traces massive SFR, total rates sensitive to IMF extrapolation SFRs subject to systematic errors from extinction, escape of ionizing radiation from galaxy

Leakage of Ionizing Flux at z ~ 3 Shapley et al. 2006, ApJ, 651, 688

composite spectrum

Calzetti et al., ApJ, submitted Kennicutt & Moustakas, in prep HII regions galaxies (integrated fluxes)

Other Emission Lines - H  (0.48  m) - Paschen-  (1.9  m) - Brackett-  (2.2  m) - [OII] (0.37  m) - Lyman-  (0.12  m) Scoville et al. 2000, AJ, 122, 3017

Wavelength

Moustakas, Kennicutt, Tremonti 2006, ApJ, 642, 775

Moustakas et al. 2006, ApJ, 642, 775

M83 = NGC 5236 (Sc) SINGG: Survey for Ionization in Neutral-Gas Galaxies 11 Mpc Ha/Ultraviolet Survey (11HUGS)

Lecture 1 Ended Here Extra Slides Follow

Dust Emission Interstellar dust absorbs ~50% of starlight in galaxies, re-radiates in thermal infrared (3–1000  m) Provides near-bolometric measure of SFR in dusty starbursts, where absorbed fraction ~100% Largest systematic errors from non-absorbed star formation and dust heated by older stars Different components of IR trace distinct dust species and stellar sub-populations

FIR observations probe the most luminous star-forming galaxies, with SFR >> SFR* (>>10 M o /yr at present epoch). Martin et al. 2005, ApJ, 619, L59

NGC 628 (M74) C. Tremonti

NGC 7331: Regan et al. 2004, ApJS, 154, 204

IRAC 8.0  m

Gordon et al. 2004, ApJS, 154, 215 MIPS 24  m

FIR to SFR? Dale et al (  m)  m 24  m70  m160  m `calorimetric’ IR FIR - sensitive to heating from old stellar populations 8  m - mostly single photon heating (PAH emission) 24  m - both thermal and single photon heating 70  m and 160  m - mostly thermal, also from old stars

SFR (FIR)  Idea around since IRAS times (e.g., Lonsdale & Helou 1987): SFRs from bolometric IR emission  Depending on luminosity, bolometric IR may be measuring star formation or old stars’ heating  FIR SEDs depend on dust temperature (stellar field intensity; Helou 1986); problematic if wavelength coverage is not complete. Higher SFR (stellar radiation field intensity) ~ higher dust `temperature’

Moustakas et al. 2006, ApJ, 642, 775

SFR(8  m, 24  m)  ISO provided ground for investigating monochromatic IR emission as SFR tracers, esp. UIB=AFE=(?)PAH (e.g., Madden 2000, Roussel et al. 2001, Boselli et al. 2004, Forster-Schreiber et al. 2004, Peeters et al. 2004, Tacconi-Garman et al. 2005).  Spitzer has opened a `more sensitive’ window to the distant Universe:  A number of studies with Spitzer has already looked at the viability of monochromatic IR emission (mainly 8 and 24  m) as SFR indicator (Wu et al, 2005, Chary et al., Alonso-Herrero et al. 2006, etc.)  Appeal of PAH emission (restframe 7.7  m emission for z~2) for investigating star formation in high-z galaxy populations (e.g., First Look, GOODS, MIPS GTO, etc.; Daddi et al. 2005)  Monochromatic 24  m (restframe) emission also potentially useful for measuring high-z SFRs (see Dickinsons’ Spitzer Cy3 Legacy)

M81 H  + R

Calzetti et al. 2007, ApJ, submitted

Use starbursts or SF regions in galaxies (SINGS). Use P  as `ground truth’ measure of instantaneous SFR (Boeker et al. 1999; Quillen & Yukita 2001) Measure 8  m, 24  m, H , and P . Scale ~ pc M51 NGC normal galaxies (220 regions) 34 starbursts

Composite SFR Indices Basic Idea: calibrate 24  m emission (vs P  radio, etc  as tracer of dust-reprocessed SFR component use observed H  emission to trace unprocessed SFR component total SFR derived from weighted sum of 24  m + H , calibrated empirically applied to UV+FIR SFRs, “flux ratio method” (Gordon et al. 2000) Calzetti et al. 2007, ApJ, submitted

Calzetti et al Kennicutt & Moustakas 2007 HII regions galaxies (integrated fluxes)

GALEX FUV + NUV (1500/2500 A) IRAC 8.0  m MIPS 24  m H  + R

Calzetti et al. 2007, ApJ, submitted - 8  m emission is less reliable as a local SFR tracer, at least for young (HII) regions

Dale et al. 2005, ApJ, 633, 857 Rest 8  m emission traces total IR luminosity at factor 3-5 level in metal-rich galaxies, but is systematically weak in low-mass galaxies

PAH Emission vs Metallicity Low-Z starbursts: Engelbracht 2005, ApJ, 628, L29 Z  /5

B = UIT FUV G = IRAC 8  m R = MIPS 24  m M101: Gordon et al., in prep

M81 + Ho IX 8  m GALEX UV

Spectral Variations in SINGS Galaxies (centers) Smith et al. 2007, ApJ, 656, significant variations in absolute and relative PAH band strengths

Smith et al variations driven by metallicity and ambient radiation field HII region dominated AGN dominated

Bell 2003, ApJ, 586, 794 Radio Continuum Emission exploits tight observed relation between 1.4 GHz radio continuum (synchrotron) and FIR luminosity correlation may reflect CR particle injection/acceleration by supernova remnants, and thus scale with SFR no ab initio SFR calibration, bootstrapped from FIR calibration valuable method when no other tracer is available

Cookbook Extinction-Free Limit (Salpeter IMF, Z=Z Sun ) SFR (M o yr -1 ) = 1.4 x L  (1500) ergs/s/Hz SFR (M o yr -1 ) = 7.9 x L (H  ) (ergs/s) Extinction-Dominated Limit; SF Dominated SFR (M o yr -1 ) = 4.5 x L (FIR) (ergs/s) SFR (M o yr -1 ) = 5.5 x L (1.4 GHz) (ergs/Hz) Composite: SF Dominated Limit SFR (M o yr -1 ) = 7.9 x [L H , obs + a L 24  m ] (erg s -1 ) [a = 0.15 – 0.31] SFR (M o yr -1 ) = 4.5 x [L(UV) + L (FIR)] (ergs/s)

General Points and Cautions Different emission components trace distinct stellar populations and ages –nebular emission lines and resolved 24  m dust sources trace ionizing stellar population, with ages <5-10 Myr –UV starlight mainly traces “intermediate” age population, ages Myr –diffuse dust emission and PAH emission trace same “intermediate” age and older stars– 10 Myr to 10 Gyr(!) Consequence: it is important to match the SFR tracer to the application of interest –emission lines – Schmidt law, early SF phases –UV – time-averaged SFR and SFR in low surface brightness systems –dust emission – high optical depth regions Multiple tracers can constrain SF history, properties of starbursts, IMF, etc.

GALEX FUV + NUV (1500/2500 A) IRAC 8.0  m MIPS 24  m H  + R

M 81 24µm70µm160µm