High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute
X-Galactic/Ultra-high energy ( >10 19 eV)
Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter
UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2 sr Ground array Fluorescence detector Auger: 3000 km 2
Composition HiRes 2005 Auger 2010 HiRes 2010 [Wilk & Wlodarczyk 10]
Anisotropy Galaxy density integrated to 75Mpc CR intensity map ( source ~ gal ) [EW, Fisher & Piran 97] Biased ( source ~ gal for gal > gal ) [Kashti & EW 08] Cross-correlation signal: 98% CL; Consistent with LSS Repeater absence N s >N 2 n>10 -4 /Mpc 3 Larger (27->69) sample: 98.5% CL Correlation with AGN? - Signal gone - Even if there = LSS [Foteini et al. 11] [Auger coll. 08]
Composition-Anisotropy connection Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z J p (E/Z)>=J Z (E/Z) + Note: p(E/Z) propagation = Z(E) propagation Anisotropy of Z at eV implies Stronger aniso. signal (due to p) at ( /Z) eV ! Not observed! No high Z at eV. [Lemoine & EW 09]
[EW 1995; Bahcall & EW 03] [Katz & EW 09] 2 (dN/d ) Observed = 2 (dQ/d ) t eff. (t eff. : p + CMB N + Assume: p, dQ/d ~(1+z) m - > eV: consistent with protons, 2 (dQ/d ) =0.5(+-0.2) x erg/Mpc 3 yr + GZK 2 (dQ/d ) ~Const.: Consistent with shock acceleration [Reviews: Blandford & Eichler 87; EW 06 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log( 2 dQ/d ) [erg/Mpc 2 yr]
G-XG Transition at ~ eV: Fine tuning [Katz & EW 09] Inconsistent spectrumG eV
The eV challenge R B v v 2R t RF =R/ c) l =R/ 22 22 [Lovelace 76; EW 95, 04; Norman et al. 95]
What do we know about >10 19 eV CRs? J(>10 11 GeV)~1 / 100 km 2 year 2 sr Most likely X-Galactic (R L = /eB=40 p,20 kpc) (An)isotropy: 2 , consistent with LSS Composition? HiRes- p, Auger- becoming heavier(?), Anisotropy suggests p Production rate & spectrum: protons, 2 (dQ/d ) ~0.5(+-)0.2 x erg/Mpc 3 yr + GZK No “ repeaters ” : N source >N CR 2 eV) > /Mpc 3 Acceleration (expanding flow): Confinement L>L B >10 12 ( 2 / ) ( /Z eV) 2 L sun Synch. losses > (L 52 ) 1/10 ( t/10ms) -1/5 !! No L>10 12 L sun at d<d GZK Transient Sources
UHECR sources: Suspects Constraints: - L>10 12 ( 2 / ) L sun, > (L 52 ) 1/10 ( t/10ms) -1/5 - 2 (dQ/d ) ~ erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK Transient Sources Gamma-ray Bursts (GRBs) L ~ L Sun >10 12 ( 2 / ) L sun = ( / ) 2 L sun ~ (L 52 ) 1/10 ( t/10ms) -1/5 2 (dQ/d ) ~ erg* /Mpc 3 yr = erg/Mpc 3 yr Transient: T ~10s << T p ~10 5 yr Active Galactic Nuclei (AGN, Steady): ~ 10 1 L>10 14 L Sun = few brightest !! Non at d<d GZK Invoke: * “ Hidden ” (proton only) AGN * L~ L Sun, t~1month flares If e - accelerated: X/ observations rare L>10 17 L sun [Blandford 76; Lovelace 76] [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08] [EW & Loeb 09]
A comment on transients Number density of active flares (nx t) Caveats: Inefficient e-acceleration Flares turn on at z<<1 [EW & Loeb 09]
Two comments “ Q ,MeV,GRB ~10 -2 Q UHECR ” - Discrepancy due mainly to Assuming UHECRs X-Galactic above ~10 18 eV (instead of ~ eV) Magnetars? [e.g. Wick et al. 04 ; Berezinsky 08; Eichler et al 10] [Hillas 84; Arons 03]
The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV B =(B 2 /8 nT~0.01 (B~0.01 G), B ~10kpc Prediction: p D B [EW 95; Miralda-Escude & EW 96, EW 04]
GRB Model Predictions [Miralda-Escude & EW 96]
GRBs & UHECRs: Predictions CR experiments: - Few narrow spectrum sources above 3x10 20 eV - Difficult to check, even with Auger HE experiments ~10 (100TeV events)/Gton/yr Accessible to IceCube, Km3Net [Miralda-Escude & EW 96] [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]
GRB: L Sun, M BH ~1M sun, M~1M sun /s, ~ AGN: L Sun, M BH ~10 9 M sun, M~1M sun /yr, ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr, ~ Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]
Particle acceleration mechanism: (Mildly) Relativistic Collisionless Shocks?
Why Collisionless shock? p p Relativistic shock: (n’= n) ss U B /nm p c 2 <<1 (eg ~10 -9 for ISM)
Fermi shock acceleration Test particle, elastic scattering, small momentum change: “ diffusion ” v/c<<1: p=2 (strong shock) v/c~1, Assuming Isotropic diffusion Simulations: p( >>1)= Analytic approximation: p( >>1)=20/9 Open Q ’ s: Relativistic- p depends on diffusion form Self-consistent (particles + EM fields) theory [Krimsky 77; Axford, Leer & Skadron 78; Blandford & Eichler 78] v~c/3 ss v~c Energetic particle [Bednarz & Ostrowski 98; Kirk et al. 00; Ellison 05; Meli & Quenby 06] [Keshet & EW 05, Keshet 06 ]
Plasma simulations: 3D 3D e + e - plasma, =15 “ piston ” Shock forms, width ~10 c/ p, Reach B ~0.01, But: >>1/ p field decay? Particle acceleration? Relevance for e/p plasma? e/p (m p /m e =16) plasma simulations: Study physical process, but Do not reach shock formation. [Nishikawa et al. 03; Fredriksen et al. 04; Hededal et al. 04] [Spitkovsky 06] 200c/ p 40c/ p
Plasma simulations: Large 2D e + e – =15 “ piston ”, transverse ~100 c/ p, p t~10 4 BParticles p t/10 3 =2,5,13Non-thermal ( >>15) tail B scale grows, B grows to 0.01However: Note 2 ! Cooling = no >80 No steady p t~10 4 [Sironi & Spitkovsky 09] [Keshet et al. 09]
Simulations: What have we learned? 2D e + e - plasma, =15 “ piston ” : Shock forms, width ~10 c/ p B scale grows, B grows to 0.01 Growth associated with non-thermal particles No steady p t~10 4 Open: Does B survive to p t~10 9 ? Particle acceleration to > 2 ? e + e - = e-p plasma? 2D=3D? Numerics unlikely to directly resolve open Qs. Provides input/tests for analytic studies.
High energy neutrinos
High energy ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse) physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources 1MeV TeV, TeV / MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp ’s ’s] physics Cosmic accelerator: Open questions Prime scientific motivation Observed properties Detector characteristics
HE : UHECR bound p + N + 0 2 ; + e + + e + + Identify UHECR sources Study BH accretion/acceleration physics For all known sources, p <1: If X-G p ’ s: Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]
Bound implications: I. AGN models BBR05 “Hidden” ( only) sources Violating UHECR bound
Bound implications: II. experiments 2 flavors, No ”hidden” sources! Fermi
AMANDA & IceCube Completed
The Mediterranean effort ANTARES (NESTOR, NEMO) KM3NeT
Bound implications: II. experiments Radio Cerenkov
Transient sources: GRB ’ s If: Baryonic jet Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]
FERMI: GRB & f p Prompt ~1MeV synch f p ~ (100MeV)~1 (100MeV)~1 ~300 Prompt GeV photons (100MeV) >300, no ’ s ?? Is >>300, (100MeV)<<1? 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) ~1 ? Caution in inferring min : - No exponential cutoff at >1, rather f ~1/ - GeV & MeV emission likely originate from different radii (HE delay), ( =1)~R [Abdo et al. 09; Greiner et al. 09; Dermer 10] [Guetta et al. 10 J. McEnery Talk]
GRB ’ s Internal collisions at R 0 “ residual ” R>> R 0 E(R)~1/R q with q<2/3 f ~1/ q for > ( =1,R= R 0 ) May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.) GRB080916c HE delays ~300 [Li & EW 08] [Li 10]
GRB ’ s: IC40 constraints No ’ s for 117 GRBs (~1 expected, at 90%CL <2) IC is achieving relevant sensitivity
What will we learn? Detection: highly informative - Identify CR source - Strong support: Baryonic jets, p acceleration, dissipation by collisionless shocks - Fundamental/ physics Non-detection: ambiguous - 10/km 2 yr is an order of mag. (proportional to x dQ/dE x f ) - Significant non-detection (<<10/km 2 yr, <<1 /100GRB) Poynting jet (no p?) or Dissipation mechanism (eg no p acceleration to relevant E) or Radiation mechanism ( f <<0.2)
- physics & astro-physics decay e : : = 1:2:0 (Osc.) e : : = 1:1:1 appearance experiment GRBs: - timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of ’ s (and ’ s) e : : = 1:1:1 (E>E 0 ) 1:2:2 GRBs: E 0 ~10 15 eV Optimistic (very): Combining E E 0 flavor measurements may constrain flavor mixing [CPV, Sin 13 Cos ] [EW & Bahcall 97] [Rachen & Meszaros 98; Kashti & EW 05] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & EW 05; Winter 10]
Summary UHE, >10 19 eV, CRs - Anisotropy (2 ) consistent with LSS, supports protons - Likely X-Galactic protons, 2 (dQ/d ) ~ erg/Mpc 3 yr - No “ repeaters ” : N source >N CR 2 eV) > /Mpc 3 - Acceleration: L>L B >10 12 ( 2 / ) L sun, > (L 52 ) 1/10 ( t/10ms) - 1/5 Transient Sources, GRBs / L> erg/s AGN flares? HE ’ s: IceCube ’ s sensitivity meets minimum requirements for detection of XG sources Detection of a handful of ’ s may resolve outstanding puzzles: - Identify UHECR (& G-CR) sources - Resolve open “ cosmic-accelerator ” physics Q ’ s (related to BH-jet systems, particle acc., rad. mechanisms) - Constrain physics, LI, WEP - The unexpected? Coordinated wide field EM transient monitoring crucial ( “ Multi-messenger ” )