High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Nebular Astrophysics.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
Gamma-Rays and UHE Cosmic Rays from Clusters of Galaxies Susumu Inoue (Nat. Astron. Obs. Japan) and collaborators GeV 100 keV HESS Auger GLAST Suzaku ZeV.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Propagation and Composition of Ultra High Energy Cosmic Rays
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Astroparticle Physics (3/3)
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Diffusive shock acceleration: an introduction
The origin of Cosmic Rays: New developments and old puzzles
Particle acceleration and the microphysics of gamma-ray burst shocks
Neutrinos as probes of ultra-high energy astrophysical phenomena
Particle Acceleration in the Universe
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

X-Galactic/Ultra-high energy (  >10 19 eV)

Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2  sr Ground array Fluorescence detector Auger: 3000 km 2

Composition HiRes 2005 Auger 2010 HiRes 2010 [Wilk & Wlodarczyk 10]

Anisotropy Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [EW, Fisher & Piran 97] Biased (  source ~  gal for  gal >  gal ) [Kashti & EW 08] Cross-correlation signal: 98% CL; Consistent with LSS Repeater absence  N s >N 2  n>10 -4 /Mpc 3 Larger (27->69) sample: 98.5% CL Correlation with AGN? - Signal gone - Even if there = LSS [Foteini et al. 11] [Auger coll. 08]

Composition-Anisotropy connection Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z J p (E/Z)>=J Z (E/Z) + Note: p(E/Z) propagation = Z(E) propagation  Anisotropy of Z at eV implies Stronger aniso. signal (due to p) at ( /Z) eV ! Not observed!  No high Z at eV. [Lemoine & EW 09]

[EW 1995; Bahcall & EW 03] [Katz & EW 09]  2 (dN/d  ) Observed =  2 (dQ/d  ) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/d  ~(1+z) m  -  > eV: consistent with protons,  2 (dQ/d  ) =0.5(+-0.2) x erg/Mpc 3 yr + GZK  2 (dQ/d  ) ~Const.: Consistent with shock acceleration [Reviews: Blandford & Eichler 87; EW 06 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(  2 dQ/d  ) [erg/Mpc 2 yr]

G-XG Transition at ~ eV: Fine tuning [Katz & EW 09] Inconsistent spectrumG eV

The eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Lovelace 76; EW 95, 04; Norman et al. 95]

What do we know about >10 19 eV CRs? J(>10 11 GeV)~1 / 100 km 2 year 2  sr Most likely X-Galactic (R L =  /eB=40  p,20 kpc) (An)isotropy: 2 , consistent with LSS Composition? HiRes- p, Auger- becoming heavier(?), Anisotropy suggests p Production rate & spectrum: protons,  2 (dQ/d  ) ~0.5(+-)0.2 x erg/Mpc 3 yr + GZK No “ repeaters ” : N source >N CR 2  eV) > /Mpc 3 Acceleration (expanding flow): Confinement  L>L B >10 12 (  2 /  ) (  /Z eV) 2 L sun Synch. losses   > (L 52 ) 1/10 (  t/10ms) -1/5 !! No L>10 12 L sun at d<d GZK  Transient Sources

UHECR sources: Suspects Constraints: - L>10 12 (  2 /  ) L sun,  > (L 52 ) 1/10 (  t/10ms) -1/5 -  2 (dQ/d  ) ~ erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  L  ~ L Sun >10 12 (  2 /  ) L sun = (  / ) 2 L sun   ~ (L 52 ) 1/10 (  t/10ms) -1/5  2 (dQ/d  )  ~ erg* /Mpc 3 yr = erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Hidden ” (proton only) AGN * L~ L Sun,  t~1month flares If e - accelerated: X/  observations  rare L>10 17 L sun [Blandford 76; Lovelace 76] [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08] [EW & Loeb 09]

A comment on transients Number density of active flares (nx  t) Caveats: Inefficient e-acceleration Flares turn on at z<<1 [EW & Loeb 09]

Two comments “ Q ,MeV,GRB ~10 -2 Q UHECR ” - Discrepancy due mainly to Assuming UHECRs X-Galactic above ~10 18 eV (instead of ~ eV) Magnetars? [e.g. Wick et al. 04 ; Berezinsky 08; Eichler et al 10] [Hillas 84; Arons 03]

The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [EW 95; Miralda-Escude & EW 96, EW 04]

GRB Model Predictions [Miralda-Escude & EW 96]

GRBs & UHECRs: Predictions CR experiments: - Few narrow spectrum sources above 3x10 20 eV - Difficult to check, even with Auger HE experiments ~10 (100TeV events)/Gton/yr Accessible to IceCube, Km3Net [Miralda-Escude & EW 96] [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

GRB: L Sun, M BH ~1M sun, M~1M sun /s,  ~ AGN: L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~ Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]

Particle acceleration mechanism: (Mildly) Relativistic Collisionless Shocks?

Why Collisionless shock? p  p Relativistic shock: (n’=  n) ss U B /nm p c 2 <<1 (eg ~10 -9 for ISM)

Fermi shock acceleration Test particle, elastic scattering, small momentum change: “ diffusion ” v/c<<1: p=2 (strong shock) v/c~1, Assuming Isotropic diffusion Simulations: p(  >>1)= Analytic approximation: p(  >>1)=20/9 Open Q ’ s: Relativistic- p depends on diffusion form Self-consistent (particles + EM fields) theory [Krimsky 77; Axford, Leer & Skadron 78; Blandford & Eichler 78] v~c/3 ss v~c Energetic particle [Bednarz & Ostrowski 98; Kirk et al. 00; Ellison 05; Meli & Quenby 06] [Keshet & EW 05, Keshet 06 ]

Plasma simulations: 3D 3D e + e - plasma,  =15 “ piston ” Shock forms, width ~10 c/  p, Reach  B ~0.01, But: >>1/  p field decay? Particle acceleration? Relevance for e/p plasma? e/p (m p /m e =16) plasma simulations: Study physical process, but Do not reach shock formation. [Nishikawa et al. 03; Fredriksen et al. 04; Hededal et al. 04] [Spitkovsky 06] 200c/  p 40c/  p

Plasma simulations: Large 2D e + e –  =15 “ piston ”, transverse ~100 c/  p,  p t~10 4  BParticles  p t/10 3 =2,5,13Non-thermal (  >>15) tail B scale grows,  B grows to 0.01However: Note  2 ! Cooling = no  >80 No steady  p t~10 4 [Sironi & Spitkovsky 09] [Keshet et al. 09]

Simulations: What have we learned? 2D e + e - plasma,  =15 “ piston ” : Shock forms, width ~10 c/  p B scale grows,  B grows to 0.01 Growth associated with non-thermal particles No steady  p t~10 4 Open: Does B survive to  p t~10 9 ? Particle acceleration to >  2 ? e + e - = e-p plasma? 2D=3D?  Numerics unlikely to directly resolve open Qs. Provides input/tests for analytic studies.

High energy neutrinos

High energy  ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources 1MeV  TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics Cosmic accelerator: Open questions  Prime scientific motivation Observed properties  Detector characteristics

HE  : UHECR bound p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics For all known sources,   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

Bound implications: I. AGN models BBR05 “Hidden” ( only) sources Violating UHECR bound

Bound implications: II. experiments 2 flavors, No ”hidden” sources! Fermi

AMANDA & IceCube Completed

The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

Bound implications: II. experiments Radio Cerenkov

Transient sources: GRB ’ s If: Baryonic jet Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

FERMI: GRB  & f p  Prompt ~1MeV synch  f p  ~   (100MeV)~1   (100MeV)~1  ~300 Prompt GeV photons    (100MeV) >300, no ’ s ?? Is  >>300,   (100MeV)<<1? 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) ~1 ? Caution in inferring  min : - No exponential cutoff at   >1, rather f ~1/ - GeV & MeV emission likely originate from different radii (HE delay), (   =1)~R [Abdo et al. 09; Greiner et al. 09; Dermer 10] [Guetta et al. 10 J. McEnery Talk]

GRB  ’ s Internal collisions at R 0  “ residual ” R>> R 0 E(R)~1/R q with q<2/3 f ~1/ q for > (   =1,R= R 0 ) May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.) GRB080916c HE delays   ~300 [Li & EW 08] [Li 10]

GRB ’ s: IC40 constraints No ’ s for 117 GRBs (~1 expected, at 90%CL <2) IC is achieving relevant sensitivity

What will we learn? Detection: highly informative - Identify CR source - Strong support: Baryonic jets, p acceleration, dissipation by collisionless shocks - Fundamental/ physics Non-detection: ambiguous - 10/km 2 yr is an order of mag. (proportional to  x dQ/dE x f  ) - Significant non-detection (<<10/km 2 yr, <<1 /100GRB) Poynting jet (no p?) or Dissipation mechanism (eg no p acceleration to relevant E) or Radiation mechanism (  f  <<0.2)

- physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Optimistic (very): Combining E E 0 flavor measurements may constrain flavor mixing [CPV, Sin  13 Cos  ] [EW & Bahcall 97] [Rachen & Meszaros 98; Kashti & EW 05] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & EW 05; Winter 10]

Summary UHE,  >10 19 eV, CRs - Anisotropy (2  ) consistent with LSS, supports protons - Likely X-Galactic protons,  2 (dQ/d  ) ~ erg/Mpc 3 yr - No “ repeaters ” : N source >N CR 2  eV) > /Mpc 3 - Acceleration: L>L B >10 12 (  2 /  ) L sun,  > (L 52 ) 1/10 (  t/10ms) - 1/5  Transient Sources, GRBs / L> erg/s AGN flares? HE ’ s: IceCube ’ s sensitivity meets minimum requirements for detection of XG sources Detection of a handful of ’ s may resolve outstanding puzzles: - Identify UHECR (& G-CR) sources - Resolve open “ cosmic-accelerator ” physics Q ’ s (related to BH-jet systems, particle acc., rad. mechanisms) - Constrain physics, LI, WEP - The unexpected? Coordinated wide field EM transient monitoring crucial ( “ Multi-messenger ” )