1 Lecture 26: Storage Systems Topics: Storage Systems (Chapter 6), other innovations Final exam stats:  Highest: 95  Mean: 70, Median: 73  Toughest.

Slides:



Advertisements
Similar presentations
1 Lecture 22: I/O, Disk Systems Todays topics: I/O overview Disk basics RAID Reminder: Assignment 8 due Tue 11/21.
Advertisements

CS224 Spring 2011 Computer Organization CS224 Chapter 6A: Disk Systems With thanks to M.J. Irwin, D. Patterson, and J. Hennessy for some lecture slide.
Faculty of Information Technology Department of Computer Science Computer Organization Chapter 7 External Memory Mohammad Sharaf.
RAID Redundant Array of Independent Disks
CSCE430/830 Computer Architecture
Operating Systems ECE344 Ashvin Goel ECE University of Toronto Disks and RAID.
Chapter 6 External Memory Disk and RAID (Redundant Arrays of Independent Disks) CS-147 Fall 2010 Jonathan Wang.
RAID- Redundant Array of Inexpensive Drives. Purpose Provide faster data access and larger storage Provide data redundancy.
R.A.I.D. Copyright © 2005 by James Hug Redundant Array of Independent (or Inexpensive) Disks.
Lecture 36: Chapter 6 Today’s topic –RAID 1. RAID Redundant Array of Inexpensive (Independent) Disks –Use multiple smaller disks (c.f. one large disk)
CSCE 212 Chapter 8 Storage, Networks, and Other Peripherals Instructor: Jason D. Bakos.
Computer ArchitectureFall 2007 © November 28, 2007 Karem A. Sakallah Lecture 24 Disk IO and RAID CS : Computer Architecture.
1 Storage (cont’d) Disk scheduling Reducing seek time (cont’d) Reducing rotational latency RAIDs.
Other Disk Details. 2 Disk Formatting After manufacturing disk has no information –Is stack of platters coated with magnetizable metal oxide Before use,
Lecture 17 I/O Optimization. Disk Organization Tracks: concentric rings around disk surface Sectors: arc of track, minimum unit of transfer Cylinder:
1 Chapter 6 Storage and Multimedia: The Facts and More.
1 Lecture 27: Disks, Reliability, SSDs, Processors Topics: HDDs, SSDs, RAID, Intel and IBM case studies Final exam stats:  Highest 91, 18 scores of 82+
Computer ArchitectureFall 2008 © November 12, 2007 Nael Abu-Ghazaleh Lecture 24 Disk IO.
1 Lecture 23: Multiprocessors Today’s topics:  RAID  Multiprocessor taxonomy  Snooping-based cache coherence protocol.
1 Lecture 25: Interconnection Networks, Disks Topics: flow control, router microarchitecture, RAID.
S.1 Review: Major Components of a Computer Processor Control Datapath Memory Devices Input Output Cache Main Memory Secondary Memory (Disk)
I/O Systems and Storage Systems May 22, 2000 Instructor: Gary Kimura.
RAID Systems CS Introduction to Operating Systems.
Lecture 39: Review Session #1 Reminders –Final exam, Thursday 3:10pm Sloan 150 –Course evaluation (Blue Course Evaluation) Access through.
Chapter 6 RAID. Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f.
DISKS IS421. DISK  A disk consists of Read/write head, and arm  A platter is divided into Tracks and sector  The R/W heads can R/W at the same time.
CS 346 – Chapter 10 Mass storage –Advantages? –Disk features –Disk scheduling –Disk formatting –Managing swap space –RAID.
1 Database Systems Storage Media Asma Ahmad 21 st Apr, 11.
Storage & Peripherals Disks, Networks, and Other Devices.
CS 352 : Computer Organization and Design University of Wisconsin-Eau Claire Dan Ernst Storage Systems.
1 Recitation 8 Disk & File System. 2 Disk Scheduling Disks are at least four orders of magnitude slower than main memory –The performance of disk I/O.
CSE 321b Computer Organization (2) تنظيم الحاسب (2) 3 rd year, Computer Engineering Winter 2015 Lecture #4 Dr. Hazem Ibrahim Shehata Dept. of Computer.
Redundant Array of Independent Disks
Two or more disks Capacity is the same as the total capacity of the drives in the array No fault tolerance-risk of data loss is proportional to the number.
L/O/G/O External Memory Chapter 3 (C) CS.216 Computer Architecture and Organization.
CSE431 Chapter 6A.1Irwin, PSU, 2008 Chapter 6A: Disk Systems Mary Jane Irwin ( ) [Adapted from Computer Organization.
I/O – Chapter 8 Introduction Disk Storage and Dependability – 8.2 Buses and other connectors – 8.4 I/O performance measures – 8.6.
1 Chapter 7: Storage Systems Introduction Magnetic disks Buses RAID: Redundant Arrays of Inexpensive Disks.
Disk Access. DISK STRUCTURE Sector: Smallest unit of data transfer from/to disk; 512B 2/4/8 adjacent sectors transferred together: Blocks Read/write heads.
RAID COP 5611 Advanced Operating Systems Adapted from Andy Wang’s slides at FSU.
Lecture 9 of Advanced Databases Storage and File Structure (Part II) Instructor: Mr.Ahmed Al Astal.
Redundant Array of Inexpensive Disks aka Redundant Array of Independent Disks (RAID) Modified from CCT slides.
Topic: Disks – file system devices. Rotational Media Sector Track Cylinder Head Platter Arm Access time = seek time + rotational delay + transfer time.
Disks Chapter 5 Thursday, April 5, Today’s Schedule Input/Output – Disks (Chapter 5.4)  Magnetic vs. Optical Disks  RAID levels and functions.
1 Lecture 26: Networks, Storage Topics: router microarchitecture, disks, RAID (Appendix D) Final exam: Monday 30 th Apr 10:30-12:30 Same rules as the midterm.
Lecture 40: Review Session #2 Reminders –Final exam, Thursday 3:10pm Sloan 150 –Course evaluation (Blue Course Evaluation) Access through.
Auxiliary Memory Magnetic Disk:
1 Lecture 27: Disks Today’s topics:  Disk basics  RAID  Research topics.
1 Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections )
1 Lecture: Storage, GPUs Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4)
LECTURE 13 I/O. I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access.
1 Components of the Virtual Memory System  Arrows indicate what happens on a lw virtual address data physical address TLB page table memory cache disk.
CS422 Principles of Database Systems Disk Access Chengyu Sun California State University, Los Angeles.
I/O Errors 1 Computer Organization II © McQuain RAID Redundant Array of Inexpensive (Independent) Disks – Use multiple smaller disks (c.f.
Magnetic Disks Have cylinders, sectors platters, tracks, heads virtual and real disk blocks (x cylinders, y heads, z sectors per track) Relatively slow,
CS Introduction to Operating Systems
A Case for Redundant Arrays of Inexpensive Disks (RAID) -1988
Multiple Platters.
Module: Storage Systems
Disks and RAID.
RAID Non-Redundant (RAID Level 0) has the lowest cost of any RAID
IT 251 Computer Organization and Architecture
CS 554: Advanced Database System Notes 02: Hardware
Lecture 13 I/O.
RAID Disk Arrays Hank Levy 1.
Lecture 28: Reliability Today’s topics: GPU wrap-up Disk basics RAID
RAID Disk Arrays Hank Levy 1.
Lecture 27: Pot-Pourri Today’s topics:
RAID Disk Arrays Hank Levy 1.
Presentation transcript:

1 Lecture 26: Storage Systems Topics: Storage Systems (Chapter 6), other innovations Final exam stats:  Highest: 95  Mean: 70, Median: 73  Toughest questions: TM, SC

2 Role of I/O Activities external to the CPU are typically orders of magnitude slower Example: while CPU performance has improved by 50% per year, disk latencies have improved by 10% every year Typical strategy on I/O: switch contexts and work on something else Other metrics, such as bandwidth, reliability, availability, and capacity, often receive more attention than performance

3 Magnetic Disks A magnetic disk consists of 1-12 platters (metal or glass disk covered with magnetic recording material on both sides), with diameters between inches Each platter is comprised of concentric tracks (5-30K) and each track is divided into sectors (100 – 500 per track, each about 512 bytes) A movable arm holds the read/write heads for each disk surface and moves them all in tandem – a cylinder of data is accessible at a time

4 Disk Latency To read/write data, the arm has to be placed on the correct track – this seek time usually takes 5 to 12 ms on average – can take less if there is spatial locality Rotational latency is the time taken to rotate the correct sector under the head – average is typically more than 2 ms (15,000 RPM) Transfer time is the time taken to transfer a block of bits out of the disk and is typically 3 – 65 MB/second A disk controller maintains a disk cache (spatial locality can be exploited) and sets up the transfer on the bus (controller overhead)

5 RAID Reliability and availability are important metrics for disks RAID: redundant array of inexpensive (independent) disks Redundancy can deal with one or more failures Each sector of a disk records check information that allows it to determine if the disk has an error or not (in other words, redundancy already exists within a disk) When the disk read flags an error, we turn elsewhere for correct data

6 RAID 0 and RAID 1 RAID 0 has no additional redundancy (misnomer) – it uses an array of disks and stripes (interleaves) data across the arrays to improve parallelism and throughput RAID 1 mirrors or shadows every disk – every write happens to two disks Reads to the mirror may happen only when the primary disk fails – or, you may try to read both together and the quicker response is accepted Expensive solution: high reliability at twice the cost

7 RAID 3 Data is bit-interleaved across several disks and a separate disk maintains parity information for a set of bits For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1, …, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits For any read, 8 disks must be accessed (as we usually read more than a byte at a time) and for any write, 9 disks must be accessed as parity has to be re-calculated High throughput for a single request, low cost for redundancy (overhead: 12.5%), low task-level parallelism

8 RAID 4 and RAID 5 Data is block interleaved – this allows us to get all our data from a single disk on a read – in case of a disk error, read all 9 disks Block interleaving reduces thruput for a single request (as only a single disk drive is servicing the request), but improves task-level parallelism as other disk drives are free to service other requests On a write, we access the disk that stores the data and the parity disk – parity information can be updated simply by checking if the new data differs from the old data

9 RAID 5 If we have a single disk for parity, multiple writes can not happen in parallel (as all writes must update parity info) RAID 5 distributes the parity block to allow simultaneous writes

10 RAID Summary RAID 1-5 can tolerate a single fault – mirroring (RAID 1) has a 100% overhead, while parity (RAID 3, 4, 5) has modest overhead Can tolerate multiple faults by having multiple check functions – each additional check can cost an additional disk (RAID 6) RAID 6 and RAID 2 (memory-style ECC) are not commercially employed

11 Tiled Processors Similar to multi-core, but a single thread can be spread across multiple cores Need smart scheduling to reduce inter-core communication

12 Redundancy Transient faults: a bit-flip caused by a high-energy particle Error rates per transistor are not increasing, but number of transistors is increasing Need some form of redundant computation to detect errors

13 Power Optimizations Cache leakage and decay Size reconfiguration Dynamic voltage and frequency scaling

14 CS 7820: Parallel Computer Architecture Some textbook-based lectures (cache coherence, on-chip networks, consistency models, parallel algorithms) Lots of recent research papers Lots of transactional memory Multi-threaded programming assignments, take-home final, paper critiques Major project: modifying simulators to model innovative ideas – often leads to research papers

15 Title Bullet