II. Multi- photon excitation / ionization processes

Slides:



Advertisements
Similar presentations
Lecture 7 Photoionization and photoelectron spectroscopy
Advertisements

HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Applications of photoelectron velocity map imaging at high resolution or Photoionization dynamics of NH 3 (B 1 E  ) Katharine L. Reid (Paul Hockett, Mick.
INFRARED SPECTROSCOPY OF SIZE-SELECTED NEUTRAL AND CATIONIC AMMONIA CLUSTERS COMBINED WITH VACUUM-ULTRAVIOLET- PHOTOIONIZATION MASS SPECTROMETRY Masaki.
Frequency and Time Domain Studies of Toluene Adrian M. Gardner, Alistair M. Green, Julia A. Davies, Katharine L. Reid and Timothy G. Wright.
Spectroscopy The Light Spectrum. Vibrational Spectroscopy D(t) r(t) Band structure The higher the BO: i) the deeper the Well, ii) the wider the spacing.
Electronic Spectroscopy of 1-Methylpyrene cation and related species. D. Kokkin, C. Marshall, A. Bonnamy, And C. Joblin and A. Simon.
P461 - Molecules 21 MOLECULAR ENERGY LEVELS Have Schrod. Eq. For H 2 (same ideas for more complicated). For proton and electron 1,2 real solution: numeric.
METO 621 LESSON 7. Vibrating Rotator If there were no interaction between the rotation and vibration, then the total energy of a quantum state would be.
Ar Cl Ar Cl... Ar Cl Ar + - Cl Ar Stilben e(1)
Spectroscopy. Atoms and Light  Atomic electron energy levels are a source of discrete photon energies.  Change from a high to low energy state produces.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
CH3Br, HBr spectra Agust, heima,... Jan10/CH3Br18750_19250-Hbr-sim km ak.pxp Agust, www,...Jan10/PPT ak.ppt.
Off-resonance interaction between E and V state of HCl and HBr Jingming Long 22/09/2011.
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
PhD project overview - REMPI analyses of small, iodine containing molecules Helgi Rafn Hróðmarsson.
Wybren Jan Buma Molecular Photonics van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Mechanically interlocked molecules in the gas.
INFRARED-ACTIVE VIBRON BANDS ASSOCIATED WITH RARE GAS SUBSTITUTIONAL IMPURITIES IN SOLID HYDROGEN PAUL L. RASTON and DAVID T. ANDERSON, Department of Chemistry,
Electronic spectroscopy of Li(NH 3 ) 4 Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University of Leicester UK.
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Analysis of strongly perturbed 1 1  – 2 3  + – b 3  states of the KRb molecule J. T. Kim 1, Y. Lee 2, and B. Kim 3 1 Department of Photonic Engineering,
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Adrian M. Gardner, Alistair M. Green, Victor M. Tamé-Reyes, Victoria H. K Wilton and Timothy G. Wright Electronic and Photoelectron Spectroscopy of Toluene.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Current team Mikhail Ryazanov Dr. Chirantha Rodrigo Overtone-induced dissociation and isomerization of the hydroxymethyl (CH 2 OH) radical First team:
The study of two previous papers in REMPI sepectra Jingming Long
Feb High-resolution Fourier transform emission spectroscopic study of the molecular ions Yoshihiro Nakashima.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Studies of Molecular Photoruptures by using 2 Dimension (2+1) and (3+1) REMPI-TOF Jingming Long 15/09/2010.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
HBr, angular distribution analysis E(0) Updated,
Spectroscopic analysis of the A and 3 1  + states of 39 K 85 Rb J. T. Kim 1, Y. Lee 2, and B. Kim 3 1 Department of Photonic Engineering, Chosun University.
Vibronic Perturbations in the Electronic Spectrum of Magnesium Carbide Phalgun Lolur*, Richard Dawes*, Michael Heaven + *Department of Chemistry, Missouri.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Molecules in highly excited rotational states J  100.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
A New Potential Energy Surface for N 2 O-He, and PIMC Simulations Probing Infrared Spectra and Superfluidity How precise need the PES and simulations be?
Chong Tao, Calvin Mukarakate, Scott A. Reid Marquette University Richard H. Judge University of Wisconsin-Parkside 63 rd International Symposium on Molecular.
Polarimetry Ashis Kumar Podder. Definition Polarimetry is a sensitive, nondestructive technique that measures the rotation of plane polarized light by.
Electronic Spectroscopy of the 6p ← 6s Transition in Au–Ne Adrian M. Gardner, Richard J. Plowright, Carolyn D. Withers, Timothy G. Wright, Michael D. Morse.
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
Reduced Dimension Rovibrational Variational Calculations of the S 1 State of C 2 H 2 P. Bryan Changala, Joshua H. Baraban, Robert W. Field, John F. Stanton,
William D. Tuttle, Adrian M. Gardner, Laura E. Whalley and
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Characterization of CHBrCl2 photolysis by velocity map imaging
International Symposium on Molecular Spectroscopy
Metastable States Arising from the Ablation of Solid Copper
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Quantum Mechanical Treatment of The Optical Properties
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
(1+1)-REMPI spectra of initially oriented, surface-scattered molecules
Perturbation analysis in REMPI Spectra of HCl and HBr
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

Simulation: i(3D2) <- X(1S+) (0,0)

for Simulation: i(3D2) <- X(1S+) (0,0) Be´/ Bf´ = 7.975/7.969 ±0.030 cm-1 De´/Df´= (0.55/0.50 ± 0.10)x10-3 cm-1 n0 = 78625 ± 2 cm-1 E´(J) = B´J(J+1) – D´J2(J+1)2 n0 = E´(v´=0) – E´´(v´´=0) for

(2+1) REMPI spectra of I2: Fig. 2 I2; [2P1/2]c6s;1g <-<- X 0g (v1,v0)

I2; [2P1/2]c6s;1g <-<- X 0g DOP Fig. 3 I2; [2P1/2]c6s;1g <-<- X 0g (2+1) REMPI spectra of I2: as well as Rotational line series: O: J-2 <- J; P: J-1 <- J Q: J <- J R: J+1 <- J; S: J+2 <- J Exp. Calc. (v1,v0) = Dn / cm-1

i.e.: AB AB+ + e AB** |i1> |i4> |i3> |i2> : Properties of AB* and AB: - energy configurations - molecular geometries

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

16 HBr:

Total angular momentum changes For W´=0 W ´´=0: J:Q J-1;P J+1;R J-3;N J-2;O J+2;S J+3;T J DJ = ±1 z = 0

HBr: DJ = ±1,.. ,±n; n = odd; DW = 0 16 HBr: DJ = ±1,.. ,±n; n = odd; DW = 0 DJ = 0 ,±2,.. ,±n; n = even DW = 0

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

18 B´= 8.39±0.05 cm-1 D´= (0.85±0.10)x10-3cm-1 n0 = 82837±3 cm-1

“New” state, not detected before: 19 W´=3(F) W´=2(D) W´=1(P) W´=0(S) W´´=0(S) 3xhn 2xhn 3xhn 1xhn 2xhn 3xhn ½i > Predicted state ((s2p3)5dd) in this region: L1F3 (n0 = ?????) “New” state: L1F3 (n0 = 82837±3 cm-1)

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

Complicated spectra, analyses / Example I: HCl, (3+1) REMPI: n cm-1 3 x (1/l=333 nm)

HCl, (3+1) REMPI / Simulation: cm-1 ???!! ???!! ???!! OK OK Find “difference spectra” / “exp. – Calc.”

- “Difference spectra(1)” / “exp. – Calc.”: HCl, (3+1) REMPI n cm-1 3 x (1/l=333 nm) n cm-1 exp. – calc./ “Diff.sp.(1)”

Difference spectra(2) = “exp. – diff. spectra(1)” / Simulation:

“Difference spectra “(1) / Simulation:

Complicated spectra, analyses / Example II: (2,0) -band

NO D 2S: X 2P: z z Spin-rot. interaction z W= 3/2 W= 1/2 Orbit-rot. Spin-orbit interaction

E1´ E2´ (1,1) (2,2) 2S Spin-rot. interaction (2,1) (1,2) Cv´ 2P3/2 Orbit-rot. interaction 2P1/2 Av´´=0 Cv´´=0 E1´´ E2´´

, T=298K (2,0) (11) (22) (21) (12) 2S 2P

(2,0)

(2,0)

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

AB+ + e AB** : State interactions/ AB** <->AB# & dissociation processes AB** -> A# + B# ? AB#/A#+B# |i4> |i3> |i2> |i1> AB

HCl; (3+1)REMPI j3S0- <- X1S+ (0,0) ?

? ? Comparison of (2+1) og (3+1)REMPI: j3S0- <- X1S+ (0,0)

explanation: 8 7 v´=24 (3+1)REMPI State interaction / perturbation j <->V(1S+) / interaction strength

Rotational perturbation observed in vibrational band due to the transition I2; [2P3/2]c5s;1g <-<- X 0g, v1 = 0, v0 = 1 : : Because of state interactions: [2P3/2]c5s;1g <-> D´(2g)

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

AB AB+ + e AB** |i1> |i4> |i3> |i2> : Mechanism of nxhn absorption / ionization; involvement of intermediate states. ?

W´´=0(S) W´=0(S) W´´=0(S) I µ m12s1 + m32s3 N,T: I µ m32s3 20 W´´=0(S) W´=0(S) W´´=0(S) I µ m12s1 + m32s3 N,T: I µ m32s3 P,R: I µ m12s1 + m32s3 I(N,T) / I(P,R) depend on m12 and m32 or m12 /m32 Adjust m12 and m32 to obtain best fit:

HCl, E(1S+) X(1S+), (3+1)REMPI 21 HCl, E(1S+) X(1S+), (3+1)REMPI m12 /m32 = 0.90±0.15

22 W´´=0(S) W´=0 (S) W´=1 (P) W´´=0(S) W´=0 (S) Four paths:

0.81 0.36 Paths vs m12 and m32 : Major path for HCl: E(1S+) 23 X(1S+): E(1S+) Major path for HCl: Paths vs m12 and m32 : 0.81 0.36 -vs exp.: m12 /m32 = 0.90±0.15

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

Surface science studies/ collaboration work with J. C Surface science studies/ collaboration work with J.C. Polanyi, Toronto: HBr Na

Surface science studies/ collaboration work with J. C Surface science studies/ collaboration work with J.C. Polanyi, Toronto: Na effect? i.e.: 1) hn + NaBrH(s) -> NaBr(s) + H(g)

Surface science studies/ collaboration work with J. C Surface science studies/ collaboration work with J.C. Polanyi, Toronto: Na effect? i.e.: 2) hn + NaBrH(s) -> Na(s) + HBr#(g) detect / measure HBr by REMPI: observe kinetic energy.

IREMPI n

(3+1)REMPI simpler spectrum / “more convenient” wavelength 2 x (1/l=255nm) 3 x (1/l=382nm) (3+1)REMPI simpler spectrum / “more convenient” wavelength

i.e.: » straight line (3+1)REMPI spectra and s useful to determine N(J) 25oC Besta beina lína Line fit

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

V. Blanchet et al., J. Chem. Phys., 119(7), 3751, (2003): 3dpF1Su+ <-<-<- X1Sg +

II. Multi- photon excitation / ionization processes Why multiphoton exitations(?); advantages/disadvantages One color experiments / data Experimental methods: Multiphoton ionization (MPI & REMPI) Data interpretations / theory: “What to see and what not to see(?)” Results / examples: - characterization of state properties / energies - (2+1) vs (3+1) REMPI - ”New” states observed - analysis of complicated spectra - state interactions - multi-photon absorption “mechanism” - energy distribution in molecules - polyatomic molecules Two color experiments / data

|1> A30+ <- X10+ (v1,v0) Energy |0> AB = CdAr: v1+1 v1 v1-1 r (A-B)

[2P1/2]c6s;1g <-<- X 0g AB = I2: |1> v1+1 [2P1/2]c6s;1g <-<- X 0g v1 v1-1 Energy (v1,v0) v0 |0> r (A-B)

i.e.: AB nxhn – (|1>, |0> )/(v1+i,v0) excitations: nhn + AB -> AB* mhn + AB -> AB+ + e- (Ekin = 0) n I s Exp. Calc. DE-10 DE00 DE+10 (v1-1) (v1) (v1+1) nxhn |0> |1> DE10 v1 v0 v1 +1 v1 -1 : B-O approximation, etc.

V0=0 V1= 0 1 2 3 4 5

V0=0 V1= 0 1 2 3 4 5

Hence: excited states with large(r) internuclear distances can V0=0 V1= 0 1 2 3 4 5 Hence: excited states with large(r) internuclear distances can not easily be accessed in “simultaneous” excitation Use double resonance technique

Example: Two-colour optical doule resonance (ODR) ionization of I2: (1+1)REMPI Energy I2 X 1S+ g I2* B 3P0 u [I+I-]* 0 g I2+ + e r(I-I) 1´ excitation ((1´+1)+1) REMPI

Energy I2 X 1S+ g I2* B 3P0 u [I+I-]* 0 g I2+ + e r(I-I)

Please visit: http://www.raunvis.hi.is/~agust/

: Benedikt G. Waage, MS student Acknowledgments: Iceland: : Benedikt G. Waage, MS student Jón Matthíasson, Oddur Ingólfsson, PhD Kristján Matthíasson, MS student Victor Huasheng Wang, research scientist Ágúst Kvaran, professor 24

: Robert J. Donovan, Prof., Edinburgh University, UK 24 Acknowledgments: Collaborators: : Robert J. Donovan, Prof., Edinburgh University, UK Timothy G. Wright, University of Sussex, UK Lars Madsen, Aarhus, Denmark NORFA network participants (?) Funds: Icelandic Science foundation University Research Fund NORFA / NORDPLUS