Natural Language Processing and Knowledge Representation دانشگاه صنعتی اميرکبير (پلي تکنيک تهران) دانشكده مهندسي كامپيوتر آزمايشگاه سيستم‌هاي هوشمند

Slides:



Advertisements
Similar presentations
Artificial Intelligence
Advertisements

1 Knowledge Representation Introduction KR and Logic.
Modelling with expert systems. Expert systems Modelling with expert systems Coaching modelling with expert systems Advantages and limitations of modelling.
Computer Science CPSC 322 Lecture 25 Top Down Proof Procedure (Ch 5.2.2)
ARCHITECTURES FOR ARTIFICIAL INTELLIGENCE SYSTEMS
Natural Language Processing Lecture 2: Semantics.
Semantics (Representing Meaning)
Proceedings of the Conference on Intelligent Text Processing and Computational Linguistics (CICLing-2007) Learning for Semantic Parsing Advisor: Hsin-His.
Propositional Logic Reading: C , C Logic: Outline Propositional Logic Inference in Propositional Logic First-order logic.
Knowledge Representation
Introduction to Prolog What is Prolog? Application Areas of Prolog How does Prolog work? (Syntax of Prolog) Program Structure.
دانشکده مهندسي کامپيوتر و فنآوري اطلاعات – دانشگاه صنعتي اميرکبير ( پلي تکنيک تهران ) A Practical, Decision-theoretic Approach to Multi-robot Mapping and.
Introduction to Semantics To be able to reason about the meanings of utterances, we need to have ways of representing the meanings of utterances. A formal.
Introduction to AI & AI Principles (Semester 1) WEEK 8 (07/08) [Barnden’s slides only] John Barnden Professor of Artificial Intelligence School of Computer.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Lecture 9 Jim Martin.
Introduction to AI & AI Principles (Semester 1) WEEK 7 John Barnden Professor of Artificial Intelligence School of Computer Science University of Birmingham,
Let remember from the previous lesson what is Knowledge representation
ITCS 3153 Artificial Intelligence Lecture 10 Logical Agents Chapter 7 Lecture 10 Logical Agents Chapter 7.
Represent the following sentences in first-order logic, using a consistent vocabulary
Latent Semantic Analysis (LSA). Introduction to LSA Learning Model Uses Singular Value Decomposition (SVD) to simulate human learning of word and passage.
Agents that Reason Logically Logical agents have knowledge base, from which they draw conclusions TELL: provide new facts to agent ASK: decide on appropriate.
Objects Objects are at the heart of the Object Oriented Paradigm What is an object?
1 First order theories. 2 Satisfiability The classic SAT problem: given a propositional formula , is  satisfiable ? Example:  Let x 1,x 2 be propositional.
February 2009Introduction to Semantics1 Logic, Representation and Inference Introduction to Semantics What is semantics for? Role of FOL Montague Approach.
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Knowledge Engineering Second Term Fourth Year 1. Data, Information and Knowledge Data: Data is unprocessed facts and figures without any added interpretation.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
LDK R Logics for Data and Knowledge Representation Modeling First version by Alessandro Agostini and Fausto Giunchiglia Second version by Fausto Giunchiglia.
1 Knowledge Based Systems (CM0377) Lecture 4 (Last modified 5th February 2001)
November 2003CSA4050: Semantics I1 CSA4050: Advanced Topics in NLP Semantics I What is semantics for? Role of FOL Montague Approach.
Declarative vs Procedural Programming  Procedural programming requires that – the programmer tell the computer what to do. That is, how to get the output.
Slide 1 Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Jim Little UBC CS 322 – CSP October 20, 2014.
A Probabilistic Quantifier Fuzzification Mechanism: The Model and Its Evaluation for Information Retrieval Felix Díaz-Hemida, David E. Losada, Alberto.
LDK R Logics for Data and Knowledge Representation PL of Classes.
1 CS 385 Fall 2006 Chapter 1 AI: Early History and Applications.
CSA2050 Introduction to Computational Linguistics Lecture 1 What is Computational Linguistics?
1 Introduction to Computational Linguistics Eleni Miltsakaki AUTH Spring 2006-Lecture 8.
1 CS 2710, ISSP 2610 Chapter 12 Knowledge Representation.
Some Thoughts to Consider 8 How difficult is it to get a group of people, or a group of companies, or a group of nations to agree on a particular ontology?
1 First order theories (Chapter 1, Sections 1.4 – 1.5) From the slides for the book “Decision procedures” by D.Kroening and O.Strichman.
1 Reasoning with Infinite stable models Piero A. Bonatti presented by Axel Polleres (IJCAI 2001,
Chapter 7. Propositional and Predicate Logic Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
Artificial Intelligence CIS 342 The College of Saint Rose David Goldschmidt, Ph.D.
1 UNIT-3 KNOWLEDGE REPRESENTATION. 2 Agents that reason logically(Logical agents) A Knowledge based Agent The Wumpus world environment Representation,
Reasoning Systems For Categories By Franklyn O. Reasoning Systems For Categories Categories are the primary building blocks of any large-scale knowledge.
Lecture 8-2CS250: Intro to AI/Lisp What do you mean, “What do I mean?” Lecture 8-2 November 18 th, 1999 CS250.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View Basic Concepts and Background.
Some Thoughts to Consider 5 Take a look at some of the sophisticated toys being offered in stores, in catalogs, or in Sunday newspaper ads. Which ones.
March 3, 2016Introduction to Artificial Intelligence Lecture 12: Knowledge Representation & Reasoning I 1 Back to “Serious” Topics… Knowledge Representation.
Artificial Intelligence Logical Agents Chapter 7.
Computing & Information Sciences Kansas State University Monday, 18 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 11 of 42 Monday, 18 September.
Knowledge Representation Lecture 2 out of 5. Last Week Intelligence needs knowledge We need to represent this knowledge in a way a computer can process.
1 Representing and Reasoning on XML Documents: A Description Logic Approach D. Calvanese, G. D. Giacomo, M. Lenzerini Presented by Daisy Yutao Guo University.
Chapter 7. Propositional and Predicate Logic
CS 4700: Foundations of Artificial Intelligence
Knowledge Representation and Reasoning
Semantics (Representing Meaning)
The Propositional Calculus
CS 4700: Foundations of Artificial Intelligence
Knowledge Representation
Logics for Data and Knowledge Representation
Knowledge Representation and Inference
Logic for Artificial Intelligence
KNOWLEDGE REPRESENTATION
Artificial Intelligence: Logic agents
Knowledge and reasoning – second part
Back to “Serious” Topics…
Chapter 7. Propositional and Predicate Logic
Introduction to Computational Linguistics
Representations & Reasoning Systems (RRS) (2.2)
Presentation transcript:

Natural Language Processing and Knowledge Representation دانشگاه صنعتی اميرکبير (پلي تکنيک تهران) دانشكده مهندسي كامپيوتر آزمايشگاه سيستم‌هاي هوشمند پردازش زبان طبيعي پرهام مرادي

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book Natural Language as Knowledge Representation and Reasoning System This research direction emerged over past few years It grew out of concerns over the efficient handling of large scale, general purpose, reasoning and meaning of natural language Current knowledge representation and reasoning systems do not adequate for NLP This book contains most theoretical and practical computational approaches to representing and utilizing the meaning of natural language

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book Change the role of Natural Language in an Intelligent computer System Traditional view Natural Language as an interface or front end to a system such as an expert system Inferencing and knowledge processing tasks are not part of NLP Current view in this book Natural Language as knowledge representation and reasoning system NLP has own unique, computationally attractive representational and inferential machinery The structure of human mind is close to natural language

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book In the natural-language based knowledge representation and reasoning system Knowledge are : 1- Entered in computer systems via natural language in form of text or dialogs 2- Represent and combined via algorithms and data structures closely simulating the syntax and semantics of natural language 3- Reasoned about inference mechanisms which closely simulate inferences that human make in natural language 4- Exited for computer systems via natural language in the form of natural language answers to queries

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book Authors of the Book : Are computer scientists who focus clearly on the computational, computer science-style aspects of natural language Their ideas have been implemented in existing Some authors present complete systems capable of a particular type of processing on large scale. Some systems are capable of handling large scale corpora of real data

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book Potential for practical applications Combine human knowledge with nonhuman computer capabilities This combination give hope for an in-depth processing of information and knowledge in the huge volumes of natural language inputs.

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Book About the book Section One : Natural language based knowledge representation and reasoning systems based of First order classical logic Section Two : Large scale approaches to representing reasoning with and acquiring different types of knowledge for general-purpose natural language processing systems

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one Five major knowledge representation and reasoning system based on natural language UNO McAllester and Montagovian syntax KRISP Episodic logic SNePS

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one McAllester and Montagovian syntax Based on first order logic Closest to Natural Language as Knowledge representation and reasoning system Closest to Natural Language only for “simple-subject- verb-object sentences” “every doge ate bone ”  “(every dog (ate (some bone)))” Distantly related to the much richer and more complex syntax of actual natural language Effective : polynomial time inference procedure

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one McAllester and Montagovian syntax ( count.. ) Montagovian formula (every dog (ate ( some bone )) ) Is quantifier-free Without quantifying over individual dogs or individual bones all expression denote sets of individuals One set is subset of another set Example : (every dog (ate ( some bone))) is true if : Set of dogs is subset of set of individuals that each of which have the relation denoted by some member of the set of bones.

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one UNO UNO Model Proposed by Iwanska’s Use the Sets for representing syntax and semantic The sentence : “ Jan is a sick, very unhappy woman ” Jane == {[woman (health =>sick, happy => (not happy) (degree => very )) ]} Set of individuals of type Jane is the same as Subset of individuals of the type woman for witch the attribute health has value sick and for witch the function happy yields the value very unhappy

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one SNePS Proposed by Shapiro Uses the sets in several ways First use : Logical connection of SNePS are functions of sets of propositions Example : “squash is an animal, a vegetable or a mineral” SNePS : {animal(squash ), vegetable(squash ), mineral(squash ) }

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one SNePS ( count … ) Second use : predicate the whose i th argument is supposed to be an individual of some type τ, maybe written with set of τ-individuals in i th position, implying the same prediction with any subset of that set in i position Example : Sisters ({Mary, Sue, Sally}) implies : Sisters ({Mary, Sue}) Sisters ({Mary, Sally}) Sisters ({Sue, Sally})

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one 3 theme uses in this methods Sets Individuals Inference rules

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one Individuals McDonald second principle : There should be a first class object type in representation for every class of syntactic category in the language Every well formed expression in the language denotes as individual in the domain. In first-order predicate logic, only terms denote individuals of domain.

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one Some types of Individuals Proposition (episodic logic, SNePS, UNO) Categories (UNO, KRISP, episodic logic) Partially saturated relations (KRISP) Events (KRISP, episodic logic) Action or acts (episodic logic, SNePS) Situation (episodic logic)

دانشگاه صنعتي امير کبير - دانشکده مهندسي کامپيوتر و فناوري اطلاعات - آزمايشگاه سيستم ‌ هاي هوشمند - پردازش زبان طبيعي Introduction to Section one Inference rules Logic specified by : Syntax Semantic Inference Rule For building knowledge representation and reasoning system for natural language based of logic: Specifying particular function symbols Predicate symbols Giving meaning of these symbols Roles of inference in this 5 methods are different with other standard logic