6/17/2015Spectral Testing1 Spectral Testing of Digital Circuits An Embedded Tutorial Vishwani D. Agrawal Agere Systems Murray Hill, NJ 07974, USA

Slides:



Advertisements
Similar presentations
Weighted Random and Transition Density Patterns for Scan-BIST Farhana Rashid* Vishwani D. Agrawal Auburn University ECE Department, Auburn, Alabama
Advertisements

10/28/2009VLSI Design & Test Seminar1 Diagnostic Tests and Full- Response Fault Dictionary Vishwani D. Agrawal ECE Dept., Auburn University Auburn, AL.
1 Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults Chidambaram Alagappan Vishwani D. Agrawal Department of Electrical and Computer.
Nov. 21, 2006ATS'06 1 Spectral RTL Test Generation for Gate-Level Stuck-at Faults Nitin Yogi and Vishwani D. Agrawal Auburn University, Department of ECE,
Compaction of Diagnostic Test Set for a Full-Response Dictionary Mohammed Ashfaq Shukoor Vishwani D. Agrawal 18th IEEE North Atlantic Test Workshop, 2009.
1 Lecture 14 Sequential Circuit ATPG Simulation-Based Methods n Use of fault simulation for test generation n Contest n Directed search n Cost functions.
Partial Implications, etc.
Jan. 29, 2002Gaur, et al.: DELTA'021 A New Transitive Closure Algorithm with Application to Redundancy Identification Vivek Gaur Avant! Corp., Fremont,
Nitin Yogi and Vishwani D. Agrawal Auburn University Auburn, AL 36849
Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama /13/2010 NATW 10 1 A Diagnostic Test Generation System.
May 11, 2006High-Level Spectral ATPG1 High-Level Test Generation for Gate-level Fault Coverage Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
Copyright 2001, Agrawal & BushnellDay-1 AM Lecture 11 Design for Testability Theory and Practice January 15 – 17, 2005 Vishwani D. Agrawal James J. Danaher.
6/11/2015A Fault-Independent etc…1 A Fault-Independent Transitive Closure Algorithm for Redundancy Identification Vishal J. Mehta Kunal K. Dave Vishwani.
Parallel Pattern Single Fault Propagation for Combinational Circuits VLSI Testing (ELEC 7250) Submitted by Blessil George, Jyothi Chimakurthy and Malinky.
May. 04, 2007General Oral Examination1 Gate-Level Test Generation Using Spectral Methods at Register-Transfer Level Committee Members: Prof. Victor P.
Fall 2006, Oct. 31, Nov. 2 ELEC / Lecture 10 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Power Analysis:
Dec. 19, 2005ATS05: Agrawal and Doshi1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Vishwani D. Agrawal Alok S. Doshi.
Aug 11, 2006Yogi/Agrawal: Spectral Functional ATPG1 Spectral Characterization of Functional Vectors for Gate-level Fault Coverage Tests Nitin Yogi and.
Sep. 30, 2003Agrawal: ITC'031 Fault Collapsing Via Functional Dominance Vishwani D. Agrawal Rutgers University, ECE Dept., Piscataway, NJ 08854, USA
A Two Phase Approach for Minimal Diagnostic Test Set Generation Mohammed Ashfaq Shukoor Vishwani D. Agrawal 14th IEEE European Test Symposium Seville,
Nov. 8, 001Low-Power Design Digital Circuit Design for Minimum Transient Energy Vishwani D. Agrawal Circuits and Systems Research Lab, Agere Systems (Bell.
Sep. 26, 2001Agrawal: Stratified Sampling1 Stratified Sampling for Fault Coverage of VLSI Systems Vishwani D. Agrawal Agere Systems, Murray Hill, NJ
Spring 07, Feb 8 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Logic Equivalence Vishwani D. Agrawal James J.
5/7/2007VTS'071 Delay Test Quality Evaluation Using Bounded Gate Delays Soumitra Bose Intel Corporation, Design Technology, Folsom, CA Vishwani D.
Jan. 9, 2007 VLSI Design Conference Spectral RTL Test Generation for Microprocessors Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
Fall 2006, Nov. 30 ELEC / Lecture 12 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Test Power Vishwani D.
Dec. 29, 2005Texas Instruments (India)1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
1 Oct 24-26, 2006 ITC'06 Fault Coverage Estimation for Non-Random Functional Input Sequences Soumitra Bose Intel Corporation, Design Technology, Folsom,
9/21/04ELEC / Class Projects 1 ELEC / /Fall 2004 Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and.
10/11/05ELEC / Lecture 121 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Independence Fault Collapsing
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 14/13alt1 Lecture 14 Sequential Circuit ATPG Simulation-Based Methods (Lecture 13alt in the Alternative.
January 16, '02Agrawal: Delay testing1 Delay Testing of Digital Circuits Vishwani D. Agrawal Agere Systems, Murray Hill, NJ USA
Jan 6-10th, 2007VLSI Design A Reduced Complexity Algorithm for Minimizing N-Detect Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
Partial Scan Design with Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems, Circuits and Systems Research Lab Murray Hill, NJ 07974, USA.
ELEC 7250 – VLSI Testing (Spring 2005) Place and Time: Broun 235, Tuesday/Thursday, 11:00AM—12:15PM Catalog data: ELEC VLSI Testing (3) Lec. 3. Pr.,
March 17, 2008Southeastern Symposium on System Theory (SSST) 2008, March 16-18, New Orleans, Louisiana 1 Nitin Yogi and Dr. Vishwani D. Agrawal Auburn.
1 Spectral BIST Alok Doshi Anand Mudlapur. 2 Overview Introduction to spectral testing Previous work – Application of RADEMACHER – WALSH spectrum in testing.
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
Jan. 6, 2006VLSI Design '061 On the Size and Generation of Minimal N-Detection Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
Comparison of LFSR and CA for BIST
Independence Fault Collapsing and Concurrent Test Generation Thesis Advisor: Vishwani D. Agrawal Committee Members: Victor P. Nelson, Charles E. Stroud.
Oct. 5, 2001Agrawal, Kim and Saluja1 Partial Scan Design With Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems Processor Architectures and.
Dominance Fault Collapsing of Combinational Circuits By Kalpesh Shetye & Kapil Gore ELEC 7250, Spring 2004.
Copyright 2001, Agrawal & BushnellDay-1 AM-1 Lecture 11 Testing Analog & Digital Products Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical.
11/17/04VLSI Design & Test Seminar: Spectral Testing 1 Spectral Testing Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer.
Spectral Methods for Testing of Digital Circuits Doctoral Defense Nitin Yogi Dept. of ECE, Auburn University Dissertation Committee: Chair: Prof. Vishwani.
Jan. 11, '02Kim, et al., VLSI Design'021 Mutiple Faults: Modeling, Simulation and Test Yong C. Kim University of Wisconsin, Dept. of ECE, Madison, WI 53706,
March 6, th Southeastern Symposium on System Theory1 Transition Delay Fault Testing of Microprocessors by Spectral Method Nitin Yogi and Vishwani.
Diagnostic and Detection Fault Collapsing for Multiple Output Circuits Raja K. K. R. Sandireddy and Vishwani D. Agrawal Dept. Of Electrical and Computer.
Spring 07, Jan 30 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 SOC Test Scheduling Vishwani D. Agrawal James.
Copyright 2001, Agrawal & BushnellLecture 1 Introduction1 VLSI Testing Lecture 1: Introduction Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical.
Copyright 2001, Agrawal & BushnellLecture 1 Introduction1 VLSI Testing Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical and Computer Engineering.
March 8, 2006Spectral RTL ATPG1 High-Level Spectral ATPG for Gate-level Circuits Nitin Yogi and Vishwani D. Agrawal Auburn University Department of ECE.
Muralidharan Venkatasubramanian Vishwani D. Agrawal
VTS 2012: Zhao-Agrawal1 Net Diagnosis using Stuck-at and Transition Fault Models Lixing Zhao* Vishwani D. Agrawal Department of Electrical and Computer.
Vishwani D. Agrawal Auburn University, Dept. of Elec. & Comp. Engg. Auburn, AL 36849, U.S.A. Nitin Yogi NVIDIA Corporation, Santa Clara, CA th.
Mixed-Mode BIST Based on Column Matching Petr Fišer.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
November 25Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan1 Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns Nitin Yogi.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
July 10, th VLSI Design and Test Symposium1 BIST / Test-Decompressor Design using Combinational Test Spectrum Nitin Yogi Vishwani D. Agrawal Auburn.
Speaker: Nansen Huang VLSI Design and Test Seminar (ELEC ) March 9, 2016 Simulation-Based Equivalence Checking.
Lecture 14 Sequential Circuit ATPG Simulation-Based Methods
Fault Collapsing via Functional Dominance
A Primal-Dual Solution to Minimal Test Generation Problem
Veeraraghavan Ramamurthy
Mixed-Mode BIST Based on Column Matching
Lecture 14 Sequential Circuit ATPG Simulation-Based Methods
Presentation transcript:

6/17/2015Spectral Testing1 Spectral Testing of Digital Circuits An Embedded Tutorial Vishwani D. Agrawal Agere Systems Murray Hill, NJ 07974, USA January 11, 2002

6/17/2015Spectral Testing2 Basic Idea Meaningful inputs (e.g., test vectors) of a circuit are not random. Input signals must have spectral characteristics that are different from white noise (random vectors).

6/17/2015Spectral Testing3 References: Books A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, Englewood Cliffs, New Jersey, Prentice Hall, M. A. Thornton, R. Drechsler and D. M. Miller, Spectral Techniques in VLSI CAD, Boston: Kluwer Academic Publishers, 2001.

6/17/2015Spectral Testing4 References: Papers A. K. Susskind, “Testing by Verifying Walsh Coefficients,” IEEE Trans. Comp., vol. C-32, pp , Feb T.-C. Hsiao and S. C. Seth, “The Use of Rademacher-Walsh Spectrum in Random Compact Testing,” IEEE Trans. Comp., vol. C-33, pp , Oct A. Giani, S. Sheng, M. S. Hsiao and V. D. Agrawal, “Efficient Spectral Techniques for Sequential ATPG,” Proc. IEEE Design & Test (DATE) Conf., March 2001, pp A. Giani, S. Sheng, M. S. Hsiao and V. D. Agrawal, “Novel Spectral Methods for Built-In Self-Test in a System-on-a-Chip Environment,” Proc. 19 th IEEE VLSI Test Symp., Apr.-May 2001, pp

6/17/2015Spectral Testing5 Statistics of Test Vectors b c a a b c % coverage Tests: Test vectors are not random: 1.Correlation: a = b, frequently. 2.Weighting: c has more 1s than a or b.

6/17/2015Spectral Testing6 Spectrum of a Bit-Stream Hadamard matrix of order k gives bases for bit-streams of length 2 k. Example: k= –1 1 1 –1 –1 1 –1 – = H(k) x C = k.B

6/17/2015Spectral Testing7 Filtering Noise Determine coefficient matrices for the input bit-streams. Eliminate minor (small) coefficients. Multiply modified coefficients with Hadamard matrix to obtain the filtered bit-streams.

6/17/2015Spectral Testing8 Spectral ATPG Initial vectors (random) Fault simulation and vector- compaction Fault coverage ? Compute spectral coefficients Add filtered vectors to test set Stop low ok

6/17/2015Spectral Testing9 Spectral ATPG Det vec CPU s ATPG RESULTS Strategate Det vec CPU s HITEC Det vec CPU s Circuit name s5378 b12 CPU: Ultra Sparc 10 HITEC: Nierman and Patel, EDAC’91 Strategate: Hsiao et al., ACMTDAES’00 Proptest: Guo et al., DAC’99 Proptest Det vec CPU s

6/17/2015Spectral Testing10 ATPG for b Number of iterations Faults detected Spectral ATPG Proptest

6/17/2015Spectral Testing11 Spectral Self-Test Compute spectral coefficients for given test vectors. Save major coefficients. Generate tests by multiplying saved coefficients with Hadamard matrix. TPG may be implemented in software or hardware.

6/17/2015Spectral Testing12 SOC Self-Test Application Circuit name s5378 b12 Total faults Weighted-random patterns Ideal Rounded Spectral patterns Number of patterns = 70,000 Detected faults

6/17/2015Spectral Testing13 Conclusion A vector sequence is efficiently represented by its spectral coefficients. Spectral analysis is useful in ATPG and BIST. Spectral TPG synthesis is an open problem. A digital circuit is a filter: Output spectrum for random inputs is the impulse response. Analysis of impulse response may lead to suitable input spectrum for test and verification.