K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.

Slides:



Advertisements
Similar presentations
Theory of probing orbitons with RIXS
Advertisements

Ch 10 Lecture 3 Angular Overlap
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
CECAM workshop on Actinides, Manchester, June DFT+U calculations of the electronic structure of perfect and defective PuO 2 Eugene Kotomin and Denis.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
CHAPTER 9 Beyond Hydrogen Atom
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
KIAS Emergence Workshop 2005 Manybody Physics Group SKKU Valence bond solid order through spin-lattice coupling Jung Hoon Han & Chenglong Jia Sung Kyun.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Electronic structure of La2-xSrxCuO4 calculated by the
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Coordination Chemistry Bonding in transition-metal complexes.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Placing electrons in d orbitals (strong vs weak field)
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Coordination Chemistry Bonding in transition-metal complexes.
INTERATOMIC SPIN-ORBIT COUPLING: A MECHANISM FOR SPIN- SPIRAL-CAUSED FERROELECTRICITY T. A. Kaplan and S. D. Mahanti Michigan State University APS March,
Magnetism III: Magnetic Ordering
Coordination Chemistry:
Bonding in coordination compounds
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Materials Process Design and Control Laboratory ON THE DEVELOPMENT OF WEIGHTED MANY- BODY EXPANSIONS USING AB-INITIO CALCULATIONS FOR PREDICTING STABLE.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Monte Carlo study of small deposited clusters from first principles L. Balogh, L. Udvardi, L. Szunyogh Department of Theoretical Physics, Budapest University.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Berry Phase Effects on Electronic Properties
The 5th Korea-Japan-Taiwan Symposium on Strongly Correlated Electron System Manybody Lab, SKKU Spontaneous Hexagon Organization in Pyrochlore Lattice Jung.
Entangled phase diagrams of the 2D Kugel-Khomskii models Wojciech Brzezicki Andrzej M. Oleś M. Smoluchowski Institute of Physics, Kraków, Poland.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
Materials Process Design and Control Laboratory ON THE DEVELOPMENT OF WEIGHTED MANY- BODY EXPANSIONS USING AB-INITIO CALCULATIONS FOR PREDICTING STABLE.
Magnetism and Magnetic Materials DTU (10313) – 10 ECTS KU – 7.5 ECTS Sub-atomic – pm-nm With some surrounding environment and a first step towards the.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
KIAS Emergent Materials 2006 Bond Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. Reference: cond-mat/0607 Collaboration Chenglong.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Model for B Site Ordering in PMN Eric Cockayne Benjamin P. Burton Material Measurement Laboratory, NIST, Gaithersburg.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : Linear response theory CASTEP Developers’ Group with support from.
Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
GNSF: KITP: PHY Krakow, June 2008 George Jackeli Max-Planck Institute for Solid State Research, Stuttgart In collaboration with:
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Qian Niu 牛谦 University of Texas at Austin 北京大学
Electronic polarization. Low frequency dynamic properties.
Spin-Peierls Effect on Frustrated Spin Systems
Spontaneous Hexagon Organization in Pyrochlore Lattice
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Theory of Magnetic Moment in Iron Pnictides (LaOFeAs) Jiansheng Wu (UIUC), Philip Phillips (UIUC) and A.H.Castro Neto (BU) arxiv:
Spin-lattice Interaction Effects in Frustrated Antiferromagnets
Ab initio calculation of magnetic exchange parameters
Presentation transcript:

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Superexchange-Driven Magnetoelectricity in Hexagonal Antiferromagnets Kris T. Delaney Materials Research Laboratory University of California, Santa Barbara Collaborators: Maxim Mostovoy, University of Groningen Nicola A. Spaldin, UCSB Acknowledgements Funding/Computing: National Science Foundation California Nanosystems Institute San Diego Supercomputer Center Moments and Multiplets in Mott Materials program at the KITP, UCSB

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Magnetoelectricity No permanent M or P required Uses: Low-power, reduced-size technologies; magnetic memory elements, sensors, transducers Often weak: Use DFT to design new, strong magnetoelectrics E M H P

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 /  Free-energy  Induced polarization/magnetization:  Size limit (in bulk):  Our aims:  Strong spin-lattice coupling through superexchange  Increase μ through geometric frustration Linear Magnetoelectric Coupling

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Geometric Frustration ? Drives non-collinear spin order to minimize energy Heisenberg Hamiltonian: Antiferromagnetic Spins (J>0): M=0

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Symmetry & ME Response Symmetry of spin triangle with 120° spin ordering. Reference to radial axis with  :  General Form: Invariants: F=F 0 -   (E x H x +E y H y ) Invariants: F=F 0 +   (E x H y -E y H x ) C 3, m

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Superexchange  Hubbard Model for 2 states:  Virtual hopping (2 nd -order perturbation)  exchange energy, J  Direct d-d exchange often weak in transition metal oxides  Superexchange – hop through ligand J=4t 2 /U

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Superexchange pypy pxpx J<0 J>0 FM Superexchange AFM Superexchange Superexchange:  Ligand mediates exchange (e.g., oxygen)  Effective hopping d 3z 2 -r 2 d 3x 2 -r 2 pypy

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 /  e.g., Mn-O-Mn:  Superexchange magnetoelectricity: Superexchange θ S1S1 S2S2 Anderson-Kanamori-Goodenough rules: J(θ=90º)<0 (FM) J(θ=180º)>0 (AFM) E = 0 E

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Frustration + Superexchange →  d) Triangle acquires a net magnetization. b) Applied electric field displaces oppositely- charged Mn and O in opposite directions. a) M = 0 state of frustrated AFM triangle. Spins coupled by superexchange through O ligands. c) J(  ) changes due to ion displacements. Spins rotate to new ground state. V Sc = 7.3 Å 3

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Periodicity: Triangular Lattice Hexagonal Manganites M. Fiebig et al., J. Appl. Phys. 93, 8194 (2003) R Mn O

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Periodicity: Triangular Lattice Hexagonal Manganites Beware of response cancellation! e.g., Hexagonal RMnO 3 in A 2 or B 1 AFM state

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Periodicity: Kagomé Lattice e.g., Iron jarosite “Antimagnetoelectric”

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Breaking Self Compensation

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Prevent Kagomé Cancellation a) Basic Kagome lattice of Mn ions b) choose O ligand (red) locations so that ME response of orange and green triangles do not cancel. Each Mn ion is now in the center of an O triangle. c) Each MnO triangle can be transformed into a trigonal bipyramid (c.f. YMnO3 – a real material) d) Multiple layers connect through apical oxygen ions. The layers are rotated 180º to account for AFM interlayer coupling. e) Counter ions are introduced to ensure Mn 3+ and O 2- so that trigonal bipyramids are correctly bonded. Final material: CaAlMn 3 O 7

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Layer 1 vs Layer 2 Layer 1 Layer 2

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Symmetry of Structure Inversion center between Mn planes Magnetic state breaks I leaving IT valid

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / KITPite Structure

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / DFT Calculation Details  First principles computation of ME response:  Density functional theory  Finite electric fields through linear response  Density functional theory (DFT)  Vienna Ab initio Simulation Package (VASP) [1]  Plane-wave basis; periodic boundary conditions  Local spin density approximation (LSDA)  Hubbard U for Mn d electrons (U=5.5 eV, J=0.5 eV) [3]  PAW Potentials [2]  Non-collinear Magnetism  No spin-orbit interaction [1] G. Kresse and J. Furthmüller, Phys. Rev. B 54, (1996). [2] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [3] Z. Yang et al, Phys. Rev. B 60, (1999).

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Zero-Field Electronic Structure Ground-state magnetic structure from LSDA+U 120º spin ordering in ground state Net magnetization = 0 μ B Expected crystal-field splitting and occupations for high-spin Mn 3+...No orbital degeneracy Local moment = 4μ B /Mn d xz d yz 3d d x 2 -y 2 d xy dz2dz2 Primitive unit cell for simulations with periodic boundary conditions occupied unoccupied EFEF

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / No Spin-Orbit Coupling  Uniform rotation of ALL spins does not change energy  degenerate in   Calculations do not distinguish between toroidal and non-toroidal arrangements:  Calculate only  0 

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 /  Force on ion in an applied electric field:  where  Compute force-constant matrix (by finite difference):  Equilibrium under applied field (assume linear): Applied Electric Field: Linear Response Z* = Born Effective Charge i,j = degrees of freedom a = ion index P = Berry Phase Polarization: R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Results: Magnetoelectric Coupling Magnetoelectric response of “KITPite”: Cr 2 O 3 : the prototypical magnetoelectric J. Íñiguez, Phys. Rev. Lett. 101, (2008) M E Kris T. Delaney et al., arXiv: accepted in Phys. Rev. Lett.

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / A Makeable Material? YMnO 3 structure 25% alloy Mn with diamagnetic cation Ordered? (c.f. double perovskite) V Sc = 7.3 Å 3 V Mn = 6.7 Å 3

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Outline  Route to strong magnetoelectric:  Geometric frustration  Magnetic superexchange  Combination → magnetoelectricity  A periodic model: hexagonal manganite  Avoiding self compensation  Density functional calculations  Further enhancements

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 /  Three factors:  Magnetic susceptibility  Forces induced by spin change  Rigidity of (polar mode) lattice for response  J’/J small - need to approach small J limit  Lower ordering temperatures Further Enhancements V = volume per Mn ~ 60 Å 3 J’/J ~ 3.3 Å -1 [1] K ~ 6 eV/Å [2] (3x DFT result) [1] Gontchar and Nikiforov, PRB 66, (2002) [2] Iliev et al., PRB 56, 2488 (1997)

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Methods: Applied H Collinear Magnetism Non-collinear Magnetism  F HyHy

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / KITPite Magnetic Susceptibility Comparison of methods for magnetoelectric response: Applied-E (linear response) + Stable, robust - Slow, many calculations Improve with symmetry Applied-H + Fast, few calculations - Hard to stabilize; small energy scale Constant susceptibility (AFM) Huge field  small magnetization Spin system too stiff

K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING 0 3 / 1 9 / Conclusions: Magnetoelectrics  Demonstrate strong magnetoelectricity:  Superexchange  Frustration  non-collinear magnet  Key: avoid cancellation of microscopic response in periodic systems  Future:  Increase  H  Improve J’/J