Stellar archaeology in the Milky Way Halo Variable stars and stellar populations in the new Milky Way satellites discovered by the SDSS Variable stars.

Slides:



Advertisements
Similar presentations
David Cole, University of Leicester Walter Dehnen; Mark Wilkinson – University of Leicester; Justin Read – ETH Zurich 29 June 2012.
Advertisements

Variable Stars of Globular Clusters in the Large Magellanic Cloud Evan McClellan (FSU) Horace Smith (advisor) (MSU) Charles Kuehn (MSU) August 6 th, 2008.
HI in Local Group Dwarf Galaxies Jana Grcevich Advisor: Mary Putman Jana Grcevich Advisor: Mary Putman.
Ultra-faint dwarfs as fossils of the First Galaxies Mia S. Bovill Advisor: Massimo Ricotti University of Maryland Mia S. Bovill Advisor: Massimo Ricotti.
Louie Strigari Main Collaborators: James Bullock, Manoj Kaplinghat (UC Irvine) Dark Matter, Small-Scale Structure, and Dwarf Galaxies Center for Cosmology.
Modelling the Ultra-Faint Dwarf Galaxies and Tidal Streams of the Milky Way M. Fellhauer Universidad de Concepcion in collaboration with N.W. Evans 1,
Local Group Galaxies Divakara Mayya INAOE Advanced Lectures on Galaxies (2008 INAOE): Chapter 1 and 3a.
The Universe of Galaxies. A Brief History Galileo.
Clusters and Superclusters
Talk to me about our graduate program in astrophysics.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
Myung Gyoon LEE (K-GMT SWIG/Seoul National University) GMT2010:Opening New Frontiers with the GMT , Seoul National University, Korea 1.
Galaxy Formation and Evolution Open Problems Alessandro Spagna Osservatorio Astronomico di Torino Torino, 18 Febbraio 2002.
Stellar Astrophysics: Things That Are Too Hard for Keck Judy Cohen (Caltech)+ Evan Kirby, the 0Z team and Branimir Sesar Astronomy in the TMT Era Tokyo,
TeV Particle Astrophysics, Venice, August 29, 2007J. Siegal-Gaskins1 Signatures of ΛCDM substructure in tidal debris Jennifer Siegal-Gaskins in collaboration.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
Unveiling the formation of the Galactic disks and Andromeda halo with WFMOS Masashi Chiba (Tohoku University, Sendai)
Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.
Surveying the Galaxy: classical methods applied to topical science and the role of the ING Gerry Gilmore Institute of Astronomy Cambridge University.
The Nature of the Least Luminous Galaxies Josh Simon Carnegie Observatories Josh Simon Carnegie Observatories Marla Geha (Yale) Quinn Minor (SUNY Oneonta)
The Milky Way Galaxy James Binney Oxford University.
1 Exploring the origin of the stellar halo of the Milky Way Eric Bell Ann Arbor 29 July 2009 Eric Bell Ann Arbor 29 July 2009.
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
Construction and Evolution of the Galaxy Where do the dwarf galaxies fit in? Matthew Shetrone February 26, 2009.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
Seattle University and APO Joanne Hughes Department of Physics.
Small-scale heros: massive-star enrichment in ultrafaint dSphs Andreas Koch D. Adén, S. Feltzing (Lund) F. Matteucci (Trieste) A. McWilliam (Carnegie)
Giuseppina Battaglia Chemo-dynamics of galaxies from resolved stellar population studies in the surroundings of the Milky Way and beyond Fellow Symposium.
Variable Stars in the Old Dwarf Spheroidal Galaxies, SDSS dSph’s, and Globular Clusters Charles Kuehn Michigan State University.
Cosmology beyond the standard model Multi component dark matter model A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University.
The remote globular cluster system of M31 LAMOST Workshop, 19 th July 2010 Dougal Mackey (RSAA, ANU)1 The Newly-Discovered Remote Globular Cluster System.
To τοπικό σύστημα γαλαξιών: oι νάνοι γαλαξίες – ο ρόλος τους στην διαμόρφωση και εξέλιξη των γαλαξιών.
Dwarf LSB galaxies in the Virgo cluster Jonathan Davies.
1 Origin and Evolution of Structure and Streaming Flows in the Local Group Grant J. Mathews Center for Astrophysics/JINA University of Notre Dame X. Zhao.
The chemical evolution of the peculiar “Globular Cluster” Omega Centauri Andrea Marcolini (Uclan, Central Lancashire) Antonio Sollima (Bologna University)
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
The Chemical Impact of Stellar Mass Loss Rosemary Wyse Johns Hopkins University Gerry Gilmore, John Norris, Mark Wilkinson, Vasily Belokurov, Sergei Koposov,
Dwarf Spheroidal Galaxies Orbiting the Milky Way Edward W Olszewski, Steward Obs.
Gamma-rays from Dark Matter Annihilation in Milky Way Satellites Louie Strigari UC Irvine, Center for Cosmology Getting Prepared for GLAST UCLA,
The Least Luminous Galaxies: Faint But Not Dull Daniel Zucker Macquarie University/ Anglo-Australian Observatory.
The Masses and Metallicities of the Least Luminous Galaxies Josh Simon Carnegie Observatories Josh Simon Carnegie Observatories Marla Geha (Yale) Beth.
Modelling the Stellar Populations of The Milky Way and Andromeda Collaborators: Theory:Observations: Kathryn Johnston (Columbia) Annette Ferguson (Edinburgh)
Myung Gyoon Lee With Hong Soo Park & In Sung Jang Seoul National University, Korea Multiwavelength surveys: Formation and Evolution of Galaxies from the.
Myung Gyoon Lee Seoul National University, Korea The 6 th KIAS Workshop on Cosmology and Structure Formation, Nov 4-7, 2014, KIAS, Seoul 1.
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Globular Cluster - Dwarf Galaxy Connection W1: a case study in our neighborhood Ann Arbor, Aug Beth Willman W1 DEIMOS Observations M.Geha (HIA/Yale)
The Ultra-Faint Milky Way Satellites
Blue stragglers in dwarf spheroidal galaxies L.Rizzi Osservatorio Astronomico di Padova In collaboration with: Enrico V. Held, Giampaolo Bertelli, Ivo.
Tuesday Summary Clusters - Galaxy assembly history through cosmological simulations can form bimodal cluster distributions. - Universal shape of the joint.
The High Redshift Universe Next Door
Investigating the Low- Mass Stellar Initial Mass Function in Draco Soroush Sotoudeh (University of Minnesota) Daniel Weisz, Andrew Dolphin, Evan Skillman.
Gaia ITNG2013 School, Tenerife Ken Freeman, Lecture 4: the stellar halo September 2013.
The Local Group in Cosmological Context Rosemary Wyse Johns Hopkins University Subaru/NOAJ Symposium, Nov 2011.
Instituto de Astrofìsica de Canarias
Learning about first galaxies using large surveys
Identification of RR Lyrae Stars in the Milky Way Nuclear Star Cluster
Metal Loss from Dwarf Galaxies
Metal Loss from Dwarf Galaxies
V. Ripepi INAF-Osservatorio Astronomico di Capodimonte, Napoli Co-I:
RR Lyrae variable stars
Ultra-Faint, Ultra-Dark, and Ultra-Handsome
Timothy C. Beers University of Notre Dame
Dwarf Spheroidals and Reionization: Is There a Link?
Distribution of Galaxies
The Galactic Stellar Halo imaged by VST
Boötes III: a Disrupted Dwarf Galaxy?
Henry Ferguson STScI August 28, 2008
Large Scale Structure Clusters and Groups Stellar systems
Modeling the Extended Structure of Dwarf Spheroidals (Carina, Leo I)
Topics to be covered and reviewed in this Talk
Presentation transcript:

Stellar archaeology in the Milky Way Halo Variable stars and stellar populations in the new Milky Way satellites discovered by the SDSS Variable stars and stellar populations in the new Milky Way satellites discovered by the SDSS Ilaria Musella INAF – Osservatorio Astronomico di Capodimonte Napoli Clementini, Dall’Ora, Marconi, Ripepi, Greco, Di Fabrizio, Kinemuchi, Smith, Rodgers, Kuehn, Beers, Catelan, Pritzl

 -CDM hierarchical scenario ---> dSphs as Building Blocks of larger galaxies (such as the MW)  We should see remnants of this process  MW halo properties homogeneous with MW dSph satellites  -CDM hierarchical scenario ---> dSphs as Building Blocks of larger galaxies (such as the MW)  We should see remnants of this process  MW halo properties homogeneous with MW dSph satellites Galaxy formation mechanisms Galaxy formation mechanisms  Sgr dSph  CMa dSph/overdensity (debated)  Substructures in the M31 halo  Sgr dSph  CMa dSph/overdensity (debated)  Substructures in the M31 halo

Dwarf Spheroidal galaxies Old dSph’s Draco Ursa Minor Fornax Carina Sculptor LeoI LeoII Sextans Sagittarius Canis Major The impact of SDSS has been dramatic: 16 new objects have been discovered in the last years. The most numerous in the LG The most dark matter dominated Complex and unique SFH Metallicity (chemistry) Problem Variable Star Problem Missing Satellite Problem (MSP) new objects Bootes Bootes III Ursa Major Ursa Major II Canes Venatici I Canes Venatici II Coma Leo IV Leo T Hercules Bootes II Willman 1 Segue 1 Segue 2 Koposov I Koposov II new objects Bootes Bootes III Ursa Major Ursa Major II Canes Venatici I Canes Venatici II Coma Leo IV Leo T Hercules Bootes II Willman 1 Segue 1 Segue 2 Koposov I Koposov II

MW Inner 100 kpc

Milky Way satellites  Leo V  Boo II  Boo III

Old dSph’s GCs Dimensions --> Luminosity --> adapted from Belokurov et al BooII K1 K2 And XII And XIII And XI SDSS GCs And XV And XVI  BooIII   Segue 2 SDSS dSph’s new objects Bootes Bootes III Ursa Major Ursa Major II Canes Venatici I Canes Venatici II Coma Leo IV Leo T Hercules Bootes II Willman 1 Segue 1 Segue 2 Koposov I Koposov II new objects Bootes Bootes III Ursa Major Ursa Major II Canes Venatici I Canes Venatici II Coma Leo IV Leo T Hercules Bootes II Willman 1 Segue 1 Segue 2 Koposov I Koposov II GCs dSph’s luminosity and mass limit of galaxy formation? …. or tidally disrupted remnants?

 Fainter than previously known dSph’s:  V > 28 mag/arcsec -2 (M v ~ -7 mag, r h ≥ 100 pc)  Properties intermediate between GCs and dSph’s (M v ~ -7 mag, r h ≥ 100 pc)  Darkest known stellar systems (M/L from ~35 to ~1000)  Metal poor (…as metal poor as stars in the MW halo)  Irregular shape  distorted  tidally interacting ~ 13 gyr)  Host an ancient population (t ~ 13 gyr)  RR Lyrae  Satellite deficit reduced to a factor 4 (Simon & Geha, 2007) New faint dwarf satellites: “building blocks” of the MW halo?

Looking for the “building blocks” of the MW halo In the MW, most of the GCs with an RR population sharply divide into two distinct groups, based on (Oosterhoff 1939) Oo I = 0.55 d OoII = 0.65 d In the MW, most of the GCs with an RR population sharply divide into two distinct groups, based on (Oosterhoff 1939) Oo I = 0.55 d OoII = 0.65 d And outside the Milky Way? And the old dSphs? And outside the Milky Way? And the old dSphs? Oo I Gap Oo II Oo I Gap adapted from Catelan, Greco et al. 2009, in preparation

Our projects: Which is the Oostehoff type of SDSS faint dSphs? Published Bootes I Canes Venatici I Canes Venatici II Coma Accepted Leo IV Telescope time: 1.5m Loiano, 1.8m Lowell, 2.2m ESO, WIRO, INT, TNG,SOAR, WHT We use time-series photometry for the listed galaxy to study the properties of their variable stars In progress UMa II Hercules Bootes II To observe Bootes III

( α(J2000) 14:00:06 δ(J2000) 14:30:00 Ellipticity R h 13′.0 ± 0′.7 V tot (mag) 13.6 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 18.9 ± 0.2 mag revised ± 0.08 mag revised ± 0.08 mag D 60 kpc D 60 ± 6 kpc revised 66 ± 6 kpc revised 66 ± 6 kpc M V 0.5 mag M V -5.8 ± 0.5 mag μ V 28.3 ± 0.5 mag/arcsec -2 M/L … along with the UMi dSph one of the most dark matter dominated object in the Universe! Belokurov et al Dall’Ora et al. 2006, ApJL ( α(J2000) 14:00:06 δ(J2000) 14:30:00 Ellipticity R h 13′.0 ± 0′.7 V tot (mag) 13.6 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 18.9 ± 0.2 mag revised ± 0.08 mag revised ± 0.08 mag D 60 kpc D 60 ± 6 kpc revised 66 ± 6 kpc revised 66 ± 6 kpc M V 0.5 mag M V -5.8 ± 0.5 mag μ V 28.3 ± 0.5 mag/arcsec -2 M/L … along with the UMi dSph one of the most dark matter dominated object in the Universe! Belokurov et al Dall’Ora et al. 2006, ApJL Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress 11 RR Lyrae stars: 5 RRab’s, 5 RRc’s, 1 RRd, 1 LPV =0.69 d =0.37 d OoII

( α(J2000) 13:28:03 δ(J2000) 33:33:21.0 Ellipticity R h 8′.5 ± 0′.5 V tot (mag) 13.9 ± 0.5 mag [Fe/H] ± 0.02 mag (m-M) o ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 224 kpc D /-20 kpc revised /-5 kpc revised /-5 kpc M V 0.5 mag M V -7.9 ± 0.5 mag μ V 28.2 ± 0.5 mag/arcsec -2 M/L 221 ± 108 Zucker et al Kuehn et al. 2008, ApJL ( α(J2000) 13:28:03 δ(J2000) 33:33:21.0 Ellipticity R h 8′.5 ± 0′.5 V tot (mag) 13.9 ± 0.5 mag [Fe/H] ± 0.02 mag (m-M) o ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 224 kpc D /-20 kpc revised /-5 kpc revised /-5 kpc M V 0.5 mag M V -7.9 ± 0.5 mag μ V 28.2 ± 0.5 mag/arcsec -2 M/L 221 ± 108 Zucker et al Kuehn et al. 2008, ApJL Variable Stars RRab (in red) RRc (in blue) Candidate AC (in purple) Variables without periods (in cyan) Variable Stars RRab (in red) RRc (in blue) Candidate AC (in purple) Variables without periods (in cyan) 4 Age Components 13 Gyr (red line) 5 Gyr (blue line) 1.5 Gyr (green line) 0.6 Gyr (black line) 4 Age Components 13 Gyr (red line) 5 Gyr (blue line) 1.5 Gyr (green line) 0.6 Gyr (black line) [Fe/H] = -2.1/-2.0 (ZW84/CG97) [Fe/H] = -2.1/-2.0 (ZW84/CG97) Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress RRab’s RRc AC 23 RR Lyrae stars: 18 RRab’s, 5 RRc’s 3AC 58 candidate variable (RR Lyrae?) =0.60 d =0.38 d Oosterhoff intermediate

RRab RRc ( α(J2000) 12:57:10 δ(J2000) 34:19:15 Ellipticity 0.3 R h 3′.0 V tot (mag) 15.1 ± 0.5 mag [Fe/H] ± 0.12 mag (m-M) o ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 151 kpc D /-13 kpc revised /-5 kpc revised /-5 kpc M V 0.6 mag M V -4.8 ± 0.6 mag μ V 29.5 mag/arcsec -2 M/L 336 ± 240 Belokurov et al Greco et al. 2008, ApJL ( α(J2000) 12:57:10 δ(J2000) 34:19:15 Ellipticity 0.3 R h 3′.0 V tot (mag) 15.1 ± 0.5 mag [Fe/H] ± 0.12 mag (m-M) o ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 151 kpc D /-13 kpc revised /-5 kpc revised /-5 kpc M V 0.6 mag M V -4.8 ± 0.6 mag μ V 29.5 mag/arcsec -2 M/L 336 ± 240 Belokurov et al Greco et al. 2008, ApJL Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress __ M15 _ _ M3 __ M15 _ _ M3 2 RR Lyrae stars: 1 RRab, 1 RRc Several candidate BSSs =0.74 d =0.36 d OoII

( α(J2000) 12:26:59 δ(J2000) 23:54:15 Ellipticity 0.5 R h 5’ V tot (mag) 15.1 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 18.2 ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 44 kpc D 44 ± 4 kpc revised 40 ± 1 kpc revised 40 ± 1 kpc M V 0.6 mag M V -3.7 ± 0.6 mag μ V 29.0 mag/arcsec -2 M/L 448 ± 297 Belokurov et al Musella et al. 2009, ApJL ( α(J2000) 12:26:59 δ(J2000) 23:54:15 Ellipticity 0.5 R h 5’ V tot (mag) 15.1 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 18.2 ± 0.2 mag revised ± 0.06 mag revised ± 0.06 mag D 44 kpc D 44 ± 4 kpc revised 40 ± 1 kpc revised 40 ± 1 kpc M V 0.6 mag M V -3.7 ± 0.6 mag μ V 29.0 mag/arcsec -2 M/L 448 ± 297 Belokurov et al Musella et al. 2009, ApJL __ M68 _ _ M3 __ M68 _ _ M3 Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress 2 RR Lyrae stars: V1= RRab, V2= RRc, V3=short period variable =0.67 d =0.32 d OoII

3 RR Lyrae stars: 3 RRab’s 1 SX Phoenicis (V4) =0.66 d OoII __ M15 ( α(J2000) 11:32:57 δ(J2000) -00:32:00 Ellipticity 0.25 R h 3’.3 V tot (mag) 15.9 ± 0.5 mag [Fe/H] ± 0.10 mag (m-M) o 21.0 ± 0.2 mag revised ± 0.07 mag revised ± 0.07 mag D /-14 kpc revised 154 ± 5 kpc revised 154 ± 5 kpc M V 0.6 mag M V -5.1 ± 0.6 mag μ V 28.3 mag/arcsec -2 M/L 151 ± 177 Belokurov et al Moretti et al. 2009, ApJL, accepted ( α(J2000) 11:32:57 δ(J2000) -00:32:00 Ellipticity 0.25 R h 3’.3 V tot (mag) 15.9 ± 0.5 mag [Fe/H] ± 0.10 mag (m-M) o 21.0 ± 0.2 mag revised ± 0.07 mag revised ± 0.07 mag D /-14 kpc revised 154 ± 5 kpc revised 154 ± 5 kpc M V 0.6 mag M V -5.1 ± 0.6 mag μ V 28.3 mag/arcsec -2 M/L 151 ± 177 Belokurov et al Moretti et al. 2009, ApJL, accepted Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress A Pair with Leo V? (Koch et al. 2008)

( α(J2000) 16:31:02 δ(J2000) 12:47:30 Ellipticity 0.5 R h 8’.0 V tot (mag) 14.7 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 20.7 ± 0.2 mag D /-12 kpc M V 0.6 mag M V -6.0 ± 0.6 mag μ V 30.0 mag/arcsec -2 M/L 332 ± 221 Belokurov et al Work in progress ( α(J2000) 16:31:02 δ(J2000) 12:47:30 Ellipticity 0.5 R h 8’.0 V tot (mag) 14.7 ± 0.5 mag [Fe/H] ± 0.07 mag (m-M) o 20.7 ± 0.2 mag D /-12 kpc M V 0.6 mag M V -6.0 ± 0.6 mag μ V 30.0 mag/arcsec -2 M/L 332 ± 221 Belokurov et al Work in progress Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress

Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress ( α(J2000) 13:58:00 δ(J2000) 12:51:00 Ellipticity 0.21± 0.21 R h 4’.1 ± 1.6 V tot (mag) …. [Fe/H] -1.8 mag (m-M) o 18.1 ± 0.4 mag D 60 kpc D 60 ± 10 kpc revised 42 ± 8 kpc M V 1.1 mag M V -3.1 ± 1.1 mag revised -2.4 (-2.7) ± 0.7 (1.0) mag μ V 29.8 mag/arcsec -2 revised 28.4 mag/arcsec-2 ~ 35 M/L ~ 35 Wash et al. 2006, Wash et al (confirmed dSph), Wash et al. 2009, Kock et al (remnant in Sgr stream). Not clear nature Work in progress ( α(J2000) 13:58:00 δ(J2000) 12:51:00 Ellipticity 0.21± 0.21 R h 4’.1 ± 1.6 V tot (mag) …. [Fe/H] -1.8 mag (m-M) o 18.1 ± 0.4 mag D 60 kpc D 60 ± 10 kpc revised 42 ± 8 kpc M V 1.1 mag M V -3.1 ± 1.1 mag revised -2.4 (-2.7) ± 0.7 (1.0) mag μ V 29.8 mag/arcsec -2 revised 28.4 mag/arcsec-2 ~ 35 M/L ~ 35 Wash et al. 2006, Wash et al (confirmed dSph), Wash et al. 2009, Kock et al (remnant in Sgr stream). Not clear nature Work in progress

( α(J2000) 08:51:30 δ(J2000) 63:07:48 Ellipticity 0.5 R h 13’.6 V tot (mag) 14.3 ± 0.5 mag [Fe/H] ± 0.15 mag (m-M) o 17.5 ± 0.3 mag D 32 +5/-4 kpc M V 0.6 mag M V -3.8 ± 0.6 mag μ V 30.0 mag/arcsec -2 1 M/L 1722 ± 1226 Zucker et al Work in progress ( α(J2000) 08:51:30 δ(J2000) 63:07:48 Ellipticity 0.5 R h 13’.6 V tot (mag) 14.3 ± 0.5 mag [Fe/H] ± 0.15 mag (m-M) o 17.5 ± 0.3 mag D 32 +5/-4 kpc M V 0.6 mag M V -3.8 ± 0.6 mag μ V 30.0 mag/arcsec -2 1 M/L 1722 ± 1226 Zucker et al Work in progress Variable stars in the new SDSS dSph’s Bootes I Dall’Ora et al, 2006, ApJL Canes Venatici I Kuehn et al. 2007, ApJL Canes Venatici II Greco et al. 2008, ApJL Coma Musella et al. 2009, ApJL Leo IV Moretti et al., 2009, accepted, ApJL Hercules in progress Bootes II in progress Uma II in progress 1 Rrab =0.66 d OoII

Summary: The SDSS new dSph’s in the Oosterhoff plane Bootes Canes Venatici I Canes Venatici II Coma LeoIV UMa II Oo II Oo Intermediate Oo II 15 RR Lyrae stars 48 “ 2 “ 1 “

The SDSS new dSph’s in the Oosterhoff plane Oo II Gap Oo I

Thank you