Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin.

Slides:



Advertisements
Similar presentations
Temperature Measurements in the Lower Thermosphere Utilizing the RAIDS Near Infrared Spectrometer Physical Sciences Laboratories May 19, 2010 A. B. Christensen.
Advertisements

Searching for N 2 And Ammonia In Saturn's Inner Magnetosphere Polar Gateways Arctic Circle Sunrise 2008 Polar Gateways Arctic Circle Sunrise January.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Anti-parallel versus Component Reconnection at the Magnetopause K.J. Trattner Lockheed Martin Advanced Technology Center Palo Alto, CA, USA and the Polar/TIMAS,
Comparing the solar wind-magnetosphere interaction at Mercury and Saturn A. Masters Institute of Space and Astronautical Science, Japan Aerospace Exploration.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Modeling the effects of solar flares on the ionosphere of Mars Paul Withers, Joei Wroten, Michael Mendillo, Phil Chamberlin, and Tom Woods
The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab.
Observation of Auroral-like Peaked Electron Distributions at Mars D.A. Brain, J.S. Halekas, M.O. Fillingim, R.J. Lillis, L.M. Peticolas, R.P. Lin, J.G.
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
Meteor layers in the martian and venusian ionospheres: Their connection to meteor showers Paul Withers (Boston University), Martin Patzold (University.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Expected Influence of Crustal Magnetic Fields on ASPERA-3 ELS Observations: Insight from MGS D.A. Brain, J.G. Luhmann, D.L. Mitchell, R.P. Lin UC Berkeley.
Use of Martian Magnetic Field Topology as an Indicator of the Influence of Crustal Sources on Atmospheric Loss D.A. Brain, D.L. Mitchell, R. Lillis, R.
Solar System Physics Group Grande et al, Venus, RAS 2010 Solar wind interactions and Ionospheric loss mechanisms at Venus M Grande, A G Wood, I C Whittaker,
Julie A. Feldt CEDAR-GEM workshop June 26 th, 2011.
Electrons at Saturn’s moons: selected CAPS-ELS results A.J. Coates 1,2. G.H. Jones 1,2, C.S.Arridge 1,2, A. Wellbrock 1,2, G.R. Lewis 1,2, D.T. Young 3,
Brief introduction of YINGHUO-1 Micro-satellite for Mars environment exploration J. Wu, G. Zhu, H. Zhao, C. Wang, L. Lei, Y. Sun, W. Guo and S. Huang Center.
Comparative Aurora Cross-body –Intrinsic magnetospheres (e.g., Earth, Giant planets) –Induced magnetospheres (e.g., Venus, Mars, Titan) Cross-wavelength:
Observations of a structured ionospheric outflow plume at Titan EGU General Assembly Vienna, Austria 3-8 April 2011 Z66 EGU Abstract Recent results.
1 Origin of Ion Cyclotron Waves in the Polar Cusp: Insights from Comparative Planetology Discovery by OGO-5 Ion cyclotron waves in other planetary magnetospheres.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Magnetosphere-Ionosphere coupling processes reflected in
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Data Needs for Simulations of Electron-driven Processes in Planetary and Cometary Atmospheres by Laurence Campbell & Michael J. Brunger School of Chemical.
1 The effects of solar flares on planetary ionospheres Paul Withers and Michael Mendillo Boston University 725 Commonwealth Avenue, Boston MA 02215, USA.
INMS quarterly report: Aug.-Sept., 2005 Science highlights –In situ determination of the atmosphere of Enceladus much beyond anticipation - water 90%,
XVII CLUSTER Workshop, Uppsala, 14 May 2009 Fan and horseshoe instabilities -relation to the low frequency waves registered by Cluster in the polar cusp.
New results in polarimetry of planetary thermospheric emissions: Earth and Jovian cases. M. Barthelemy (1), J. Lilensten (1), C. Simon (2), H. Lamy(2),
Density trends of negative ions at Titan A. Wellbrock 1,2,3, A. J. Coates 1,3, G. H. Jones 1,3, G. R. Lewis 1,3, C. S. Arridge 1,3, D. T. Young 4, B. A.
1 MAVEN PFP ICDR May 23-25, 2011 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Particles and Fields Science Critical Design Review May ,
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Krusenberg Herrgård 12 June 2007 L Nordh/Mats André Swedish Report to ILWS.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Quarterly 17/18/2007 INMS Team Third Quarter Report July, 2007 INMS Quarterly
HISAKI mission – ひさき – Chihiro Tao 1,2, Nicolas Andre 1, Hisaki/EXCEED team 1. IRAP, Univ. de Toulouse/UPS-OMP/CNRS 2. now at NICT
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
Lunar Surface Atmosphere Spectrometer (LSAS) Objectives: The instrument LSAS is designed to study the composition and structure of the Lunar atmosphere.
1 CHARM: MAPS highlights CHARM: MAPS highlights 2010.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Foreshock and planetary size: A Venus-Mars comparison M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmstrom (IRF, Kiruna, Sweden) A. Fedorov, J.-A.
How the ionosphere of Mars works Paul Withers Boston University Department Lecture Series, EAPS, MIT Wednesday :00-17:00.
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
R. A. WEST, J. M. AJELLO, M. H. STEVENS, D. F. STROBEL, G. R. GLADSTONE, J.S. EVANS, T. BRADLEY, TITAN AIRGLOW DURING ECLIPSE 19 June 2012R. West 1.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
Titan Airglow: FUV & EUV 2009 UVIS Spectra of Airglow During Day, Night & Eclipse : JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JPL JACQUES GUSTIN.
Plasma populations in the tail of induced magnetosphere
Titan UVIS Airglow Spectra: Modeling and Laboratory Studies
MESSENGER observations of Mercury’s northern cusp
Energetic Neutral Atom Imaging of
1G. Nicolaou, 1M. Yamauchi, 1,2H. Nilsson, 1M. Wieser, 3A. Fedorov, 1D
Observations of Electrons Accelerated Upwards
Titan: FUV & EUV Spectra Limb, Dayglow, Nightglow & Eclipse
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
M. Yamauchi1, Y. Futaana1, R. Lundin1, S. Barabash1, M. Wieser1, A
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
Simulations of the response of the Mars ionosphere to solar flares and solar energetic particle events Paul Withers EGU meeting Vienna,
Mars, Venus, The Moon, and Jovian/Saturnian satellites
Oxygen Lifetimes at Europa
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Presentation transcript:

Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin 4 and the ASPERA-3 and 4 teams A. Wellbrock 1,2, F.J.Crary 3, D.T.Young 3 and the CAPS team 1. Mullard Space Science Laboratory, UCL, UK 2. Center for Planetary Sciences at UCL/Birkbeck, UK 3. Southwest Research Institite, Texas, USA 4. IRF-Kiruna, Sweden

Photoionisation in ionospheres – produces ions and photoelectrons Solar EUV gives peaks: HeII 30.4nm gives ~21-24, 27 eV photoe - at M, E; ~24eV Titan, e.g. Haider 86, Gan et al., 92, Galand et al., 06 Additionally, shoulder at ~50-60eV due to solar decrease <~16nm Measurements in Earth ionosphere give detailed spectra (e.g. Lee et al., 80, Doering et al, 76), also models e.g. Nagy & Banks 70 Peaks and shoulder are ‘fingerprints’ for day side ionosphere Mantas and Hansen, 1979; see also Fox & Dalgarno, 1979 Mars Earth

MarsVenusTitan Transition Energy (eV) Transition Energy (eV) Transition Energy (eV) Transition Energy (eV) N 2 X 2 Σ g 25.2CO 2 X 2 Π g 27.02O 2 P22.29N 2 A 2 Π u O 2 P22.29CO 2 B 2 Σ u 22.69O 4 S27.17 N 2 A 2 Π u 24.09O 2 P22.29O 2 D23.69 Table 1 – Some dominant photoelectron energies from 30.4 nm solar UV illumination (40.79 eV) Some dominant photoelectron energies from 30.4 nm solar UV illumination (40.79 eV) Ionisation potentials associated with ground and excited states of O, N 2, CO 2 are similar – table shows dominant peaks expected in 20-30eV range From Coates et al., PSS in press, 2010

Sensor Reference MeasuresEnergy range (eV/q) Energy resolution (  E/E, %) Angle range (  ) Angle bin (  ) GEOS-1, 2 S-302 Suprathermal Plasma Analyser Wrenn et al., 1981 Energy, direction , 8018x18, 8x32 Cassini CAPS Electron spectrometer (ELS) Young et al, 04, Linder et al., 98 Energy, direction , x520x5 Mars Express ASPERA-3 ELS Barabash et al., 2007a Energy, direction 10-20, x422.5x4 Venus Express ASPERA-4 ELS Barabash et al., 2007b Energy, direction 1-30, x422.5x4 CAPS, ASPERA-ELS can measure ionospheric photoelectron spectrum at Titan, Mars, Venus

Ionospheric photoelectrons at Earth, Mars, Titan – seen in ionosphere and remotely (Coates et al., 2010) E: ionosphere E: magnetosphere M: ionosphere M: tail T: ionosphere T: tail Lee et al., 1980 Coates et al., 1985 Coates et al., 2010 Frahm et al., 2006 Coates, 2009 Coates et al.,

Knudsen et al. (1980) km alt 15-40° SZA Spectra from 2 orbits Before Venus Express: PVO/RPA observations Photoelectrons seen in sunlit ionosphere Spectral features not resolved

Venus: solar wind interaction – 18 May 06 From Coates et al, PSS 2008 First observation in Venus ionosphere by VEX ASPERA-4 ELS From O rather than CO 2

Venus – ionospheric photoelectrons seen in tail up to 1.45 Rv (D), as well as in dayside ionosphere (C) on 3 June 2006, (Tsang et al, 2010, submitted) D C D C

AB B A X VSO (R V ) BS Ionospheric photoelectrons Venus Express example 20 April 2008, interval B ends at ~1.5 R v Coates et al., 2010 (PSS in press)

6 October 2010 X VSO (R V )

VEX sees photoelectrons Magnetic connection anywhere in sunlit ionosphere, via draped solar wind field, flux rope, etc Sunlit ionosphere – production of photoelectrons Dark ionosphere Photoelectron-drawn escape throughout dayside region – particularly along connected field?

Comparison of shapes: Model - VEx/ASPERA4/ELS O + - & He + -related photoelectrons  S/C potential (-4.9 eV) Photoelectron peaks identified by Coates et al. (2008) Newly identified peaks Cui et al., 2010 (JGR, submitted), Galand et al poster

Comparison: Model - VEx/ASPERA4/ELS B field line based on Vex/MAG SZA = 87° Magnetic field orientation improves quantitative comparison Cui et al., 2010 (JGR, submitted), Galand et al poster

Conclusions on ionospheric photoelectrons (IPE) IPE are seen clearly in the dayside ionospheres with suitable instrumentation The energy spectrum of IPE is distinctive, acting as a ‘fingerprint’ for ionisation processes IPE can, at times, be seen at large distances from the dayside ionospheres, e.g. in Earth’s magnetosphere, and in the tails of Mars, Venus and Titan IPE are a sensitive diagnostic ‘tracer’ of a magnetic connection to the production location, namely the dayside ionospheres IPE may play a role in setting up an ambipolar electric field at the top of the ionosphere which would enhance ionospheric escape in a mechanism analogous to the Earth’s polar wind (e.g. Ganguli, 1996 and refs), enhancing pressure-driven plasma escape. A similar mechanism was suggested at Venus (Hartle and Grebowsky, 1995), and a polar wind- related electric field escape mechanism at Titan was modelled by Keller and Cravens (1994). See Coates et al., PSS in press, 2010 for further details

Conclusions (Coates et al., PSS in press, 2010) Photolectrons are a tracer of magnetic connection to ionosphere Similar process at all objects with ambipolar electric field enhancing outflow VenusEarthMarsTitan InteractionSolar wind Saturn magneto- sphere Intrinsic magnetic fieldNoYes - dipoleLocalised crustal magnetization associated with heavily- cratered S. highlands No Species associated with dominant photoelectron peaks (dayside, high altitude) ON 2, OCO 2, ON 2, (CH 4 ) Location of ionospheric photoelectrons seen remotely from dayside ionosphere TailMagneto- sphere Tail Related ion escape?Yes (VEx)Polar windYes (MEx) Yes (T9, T15, T40)