Adaptive Rao-Blackwellized Particle Filter and It’s Evaluation for Tracking in Surveillance Xinyu Xu and Baoxin Li, Senior Member, IEEE.

Slides:



Advertisements
Similar presentations
Jose-Luis Blanco, Javier González, Juan-Antonio Fernández-Madrigal University of Málaga (Spain) Dpt. of System Engineering and Automation May Pasadena,
Advertisements

CSCE643: Computer Vision Bayesian Tracking & Particle Filtering Jinxiang Chai Some slides from Stephen Roth.
Fast Algorithms For Hierarchical Range Histogram Constructions
CHAPTER 8 More About Estimation. 8.1 Bayesian Estimation In this chapter we introduce the concepts related to estimation and begin this by considering.
Lecture 3 Probability and Measurement Error, Part 2.
(Includes references to Brian Clipp
Observers and Kalman Filters
Formation et Analyse d’Images Session 8
Motion Tracking. Image Processing and Computer Vision: 82 Introduction Finding how objects have moved in an image sequence Movement in space Movement.
1 Robust Video Stabilization Based on Particle Filter Tracking of Projected Camera Motion (IEEE 2009) Junlan Yang University of Illinois,Chicago.
Resampling techniques Why resampling? Jacknife Cross-validation Bootstrap Examples of application of bootstrap.
Graphical Models for Mobile Robot Localization Shuang Wu.
Probabilistic video stabilization using Kalman filtering and mosaicking.
Background Estimation with Gaussian Distribution for Image Segmentation, a fast approach Gianluca Bailo, Massimo Bariani, Paivi Ijas, Marco Raggio IEEE.
Sérgio Pequito Phd Student
Nonlinear and Non-Gaussian Estimation with A Focus on Particle Filters Prasanth Jeevan Mary Knox May 12, 2006.
Tracking using the Kalman Filter. Point Tracking Estimate the location of a given point along a sequence of images. (x 0,y 0 ) (x n,y n )
Particle Filters for Mobile Robot Localization 11/24/2006 Aliakbar Gorji Roborics Instructor: Dr. Shiri Amirkabir University of Technology.
1 Integration of Background Modeling and Object Tracking Yu-Ting Chen, Chu-Song Chen, Yi-Ping Hung IEEE ICME, 2006.
Today Introduction to MCMC Particle filters and MCMC
Particle Filtering for Non- Linear/Non-Gaussian System Bohyung Han
Estimation and the Kalman Filter David Johnson. The Mean of a Discrete Distribution “I have more legs than average”
Novel approach to nonlinear/non- Gaussian Bayesian state estimation N.J Gordon, D.J. Salmond and A.F.M. Smith Presenter: Tri Tran
Dorin Comaniciu Visvanathan Ramesh (Imaging & Visualization Dept., Siemens Corp. Res. Inc.) Peter Meer (Rutgers University) Real-Time Tracking of Non-Rigid.
Tracking with Linear Dynamic Models. Introduction Tracking is the problem of generating an inference about the motion of an object given a sequence of.
Face Processing System Presented by: Harvest Jang Group meeting Fall 2002.
G. Hendeby Performance Issues in Non-Gaussian Filtering Problems NSSPW ‘06 Corpus Christi College, Cambridge Performance Issues in Non-Gaussian Filtering.
1 Formation et Analyse d’Images Session 7 Daniela Hall 7 November 2005.
Graph-based consensus clustering for class discovery from gene expression data Zhiwen Yum, Hau-San Wong and Hongqiang Wang Bioinformatics, 2007.
Colorado Center for Astrodynamics Research The University of Colorado STATISTICAL ORBIT DETERMINATION Project Report Unscented kalman Filter Information.
Tracking Pedestrians Using Local Spatio- Temporal Motion Patterns in Extremely Crowded Scenes Louis Kratz and Ko Nishino IEEE TRANSACTIONS ON PATTERN ANALYSIS.
The horseshoe estimator for sparse signals CARLOS M. CARVALHO NICHOLAS G. POLSON JAMES G. SCOTT Biometrika (2010) Presented by Eric Wang 10/14/2010.
Object Tracking using Particle Filter
SIS Sequential Importance Sampling Advanced Methods In Simulation Winter 2009 Presented by: Chen Bukay, Ella Pemov, Amit Dvash.
Simultaneous Localization and Mapping Presented by Lihan He Apr. 21, 2006.
Jamal Saboune - CRV10 Tutorial Day 1 Bayesian state estimation and application to tracking Jamal Saboune VIVA Lab - SITE - University.
Probabilistic Robotics Bayes Filter Implementations.
Particle Filters for Shape Correspondence Presenter: Jingting Zeng.
Young Ki Baik, Computer Vision Lab.
-Arnaud Doucet, Nando de Freitas et al, UAI
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Principles of Parameter Estimation.
Processing Sequential Sensor Data The “John Krumm perspective” Thomas Plötz November 29 th, 2011.
Stable Multi-Target Tracking in Real-Time Surveillance Video
An Introduction to Kalman Filtering by Arthur Pece
Boosted Particle Filter: Multitarget Detection and Tracking Fayin Li.
Sequential Monte-Carlo Method -Introduction, implementation and application Fan, Xin
Short Introduction to Particle Filtering by Arthur Pece [ follows my Introduction to Kalman filtering ]
OBJECT TRACKING USING PARTICLE FILTERS. Table of Contents Tracking Tracking Tracking as a probabilistic inference problem Tracking as a probabilistic.
Tracking with dynamics
Nonlinear State Estimation
Page 0 of 7 Particle filter - IFC Implementation Particle filter – IFC implementation: Accept file (one frame at a time) Initial processing** Compute autocorrelations,
Cameron Rowe.  Introduction  Purpose  Implementation  Simple Example Problem  Extended Kalman Filters  Conclusion  Real World Examples.
1 Chapter 8: Model Inference and Averaging Presented by Hui Fang.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Network Arnaud Doucet Nando de Freitas Kevin Murphy Stuart Russell.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Kalman Filter with Process Noise Gauss- Markov.
Zhaoxia Fu, Yan Han Measurement Volume 45, Issue 4, May 2012, Pages 650–655 Reporter: Jing-Siang, Chen.
11/25/03 3D Model Acquisition by Tracking 2D Wireframes Presenter: Jing Han Shiau M. Brown, T. Drummond and R. Cipolla Department of Engineering University.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Statistical Interpretation of Least Squares ASEN.
Probabilistic Robotics
A segmentation and tracking algorithm
Non-parametric Filters
Non-parametric Filters
Non-parametric Filters
Non-parametric Filters
2. University of Northern British Columbia, Prince George, Canada
Non-parametric Filters: Particle Filters
8. One Function of Two Random Variables
Non-parametric Filters
Non-parametric Filters: Particle Filters
8. One Function of Two Random Variables
Presentation transcript:

Adaptive Rao-Blackwellized Particle Filter and It’s Evaluation for Tracking in Surveillance Xinyu Xu and Baoxin Li, Senior Member, IEEE

Abstract In this paper, by proposing an adaptive Rao- Blackwellized Particle Filter (RBPF) for tracking in surveillance, we show how to exploit the analytical relationship among state variables to improve the efficiency and accuracy of a regular particle filter (PF). In this paper, by proposing an adaptive Rao- Blackwellized Particle Filter (RBPF) for tracking in surveillance, we show how to exploit the analytical relationship among state variables to improve the efficiency and accuracy of a regular particle filter (PF).

Introduction Visual tracking is an important step in many practical applications. Visual tracking is an important step in many practical applications. Generally, suppose we have an estimator depending upon 2 variables R and L, the RB theorem reveals its variance satisfies: Generally, suppose we have an estimator depending upon 2 variables R and L, the RB theorem reveals its variance satisfies: Non-negative

For the visual tracking problem, let denote the state to be estimated and the observation, with subscript t the time index. For the visual tracking problem, let denote the state to be estimated and the observation, with subscript t the time index. The key idea of RBPF is to partition the original state-space into two parts and. The key idea of RBPF is to partition the original state-space into two parts and. The justification for this decomposition follows from the factorization of the posterior probability The justification for this decomposition follows from the factorization of the posterior probability

RBPF for tracking in surveillance a) Partition the state space a) Partition the state space

In this paper,using 8-D ellipse model to describe the target In this paper,using 8-D ellipse model to describe the target

The scale change is related to its position alone y axis, so the scale change can be estimated conditional on the location components. The 8-D state space can separate into 2 groups The scale change is related to its position alone y axis, so the scale change can be estimated conditional on the location components. The 8-D state space can separate into 2 groups Root variables containing the motion information. Leaf variables containing the scale parameters.

b) Overview of the method b) Overview of the method In this work, root variables are propagated by a first order system motion model defined by In this work, root variables are propagated by a first order system motion model defined by Conditional on the root variables, the leaf variables forms a linear-Gaussian substructure specified by Conditional on the root variables, the leaf variables forms a linear-Gaussian substructure specified by transition matrix random noise A function encoding the conditional relation of L Gaussian random noise

Since both color histogram and gradient cues do not follow a linear-Gaussian relationship with state variable, the observation model is given in a general form: Since both color histogram and gradient cues do not follow a linear-Gaussian relationship with state variable, the observation model is given in a general form: The observations form a linear relationship with state L The observations form a linear relationship with state L Image observation Nonlinear function Random noise Gaussian random noise

Relationship between variables

The RBPF algorithm

Just like regular PF, RBPF represents the posterior density by a set of weighted particles: Just like regular PF, RBPF represents the posterior density by a set of weighted particles: Each particle is represented by a triplet. Each particle is represented by a triplet. The proposed RBPF algorithm will sample the motion using PF, while apply Kalman filter to estimate the scale parameters andconditional on the motion state. The proposed RBPF algorithm will sample the motion using PF, while apply Kalman filter to estimate the scale parameters andconditional on the motion state.

(1)Propagate samples a) Sample the object motion according to a) Sample the object motion according to After this step, we have minus sign is denotes the corresponding variable is a priori estimate b) Kalman prediction for leaf states according to b) Kalman prediction for leaf states according to

According to the Kalman filter model (4)and(6), we project forward the state and error covariance using: According to the Kalman filter model (4)and(6), we project forward the state and error covariance using: After this step, we have After this step, we have Prediction for the mean of the leaf variables Covariance for leaves Observation prediction

a) Compute the color histogram for each sample ellipse Γ characterized by ellipse center and scale a) Compute the color histogram for each sample ellipse Γ characterized by ellipse center and scale Pixels that are closer to the region center are given higher weights specified by Pixels that are closer to the region center are given higher weights specified by (2)Evaluate weight for each particle Kronecker delta function

b) Compute the gradient for each sample ellipse Γ characterized by ellipse center and scale the gradient of a sample ellipse is computed as an average over gradients of all the pixels on the boundary where the gradient at pixel is set to the maximum gradient by a local search along the normal line of the ellipse at location b) Compute the gradient for each sample ellipse Γ characterized by ellipse center and scale the gradient of a sample ellipse is computed as an average over gradients of all the pixels on the boundary where the gradient at pixel is set to the maximum gradient by a local search along the normal line of the ellipse at location

A simple operator is used to compute the gradient in x and y axis for pixel finally, the gradient at point is computed as A simple operator is used to compute the gradient in x and y axis for pixel finally, the gradient at point is computed as

c) Compute the weight c) Compute the weight one is based on color histogram similarity between the hypothetical region and the target model p stands for the color histogram of a sample hypothesis in the newly observed image, and q represents the color histogram of target model. one is based on color histogram similarity between the hypothetical region and the target model p stands for the color histogram of a sample hypothesis in the newly observed image, and q represents the color histogram of target model.

Another is based on gradient Another is based on gradient Notice that all the sample is divided by the maximum gradient to normalize into range[0,1], the final weight for each sample is given by Notice that all the sample is divided by the maximum gradient to normalize into range[0,1], the final weight for each sample is given by

(3)Select samples Resampling with replacement the latest measurements will be used to modify the prediction PDF of not only the root variables but also the leaf variables. Resampling with replacement the latest measurements will be used to modify the prediction PDF of not only the root variables but also the leaf variables. After this step, After this step,

(4)Kalman update for leaf variables Kalman update is accomplished by Kalman update is accomplished by After this step, we have After this step, we have

(5)Compute the mean state at time t Since resampling has been done, the mean state can be simply computed as the average of the state particles Since resampling has been done, the mean state can be simply computed as the average of the state particles

(6)Compute the new noise variance We found that when velocity is small and constant, we only need a small noise variance to reach the smallest MSE, if velocity changes dramatically, we need a much larger noise variance to reach the lowest MSE. We found that when velocity is small and constant, we only need a small noise variance to reach the smallest MSE, if velocity changes dramatically, we need a much larger noise variance to reach the lowest MSE. The noise variance is computed by The noise variance is computed by

Evaluation of the RBPF algorithm Evaluate the performance between RBPF and PF. Evaluate the performance between RBPF and PF.

Real data experiment

Discussion Failure cases: when camera is not mounted higher than the target object … Failure cases: when camera is not mounted higher than the target object … Computation cost: the same level of estimation accuracy, RBPF needs far fewer particles than PF dose; hence, it is more efficient than PF. Computation cost: the same level of estimation accuracy, RBPF needs far fewer particles than PF dose; hence, it is more efficient than PF.

Conclusion Comparative studies using both simulated and real data have demonstrated the improved performance of the proposed RBPF over regular PF. Comparative studies using both simulated and real data have demonstrated the improved performance of the proposed RBPF over regular PF. Future working: to find a proper dependency model from a large number of state variables. Future working: to find a proper dependency model from a large number of state variables.