Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Pawel Artymowicz Alexis Brandeker Malcolm Fridlund.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Proto-Planetary Disk and Planetary Formation
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Stockholm Observatory, Sweden
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Opacities and Chemical Equilibria for Brown Dwarf and Extra-Solar Giant Planet Models Christopher M. Sharp June 9, 2004.
Proto-Brown Dwarf Disks as Products of Protostellar Disk Encounters Sijing Shen, James Wadsley (McMaster) The Western Disk Workshop May 19, 2006.
Dust particles and their spectra. Review Ge/Ay 132 Final report Ivan Grudinin.
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett.
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
Star formation across the mass spectrum Our understanding of low-mass (solar type with masses between 0.1 and 10 M SUN ) star formation has improved greatly.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Exo-planets: ground-based How common are giant planets? What is the distribution of their orbits? –3.6m HARPS: long-term radial velocity monitoring of.
Planet Formation through Radio Eyes A. Meredith Hughes Wesleyan University Kevin Flaherty (Wesleyan), Amy Steele (Wesleyan), Jesse Lieman-Sifry (Wesleyan),
A Systematic Search and Characterization of Dusty Debris Disks M. McElwain, B. Zuckerman (UCLA) Joseph H. Rhee, & I. Song (Gemini Obs.) Photo Credit: T.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Resonance Line Scattering in the  Pic Disk: Disks in Star and Planet Formation, Cumberland Lodge, July 16-19, Resonance Line Scattering in the.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
Walsh, Millar & Nomura, ApJL, 766, L23 (2013)
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
Ge/Ay133 Can we study extrasolar Kuiper Belts?  Pic, A5V star AU Mic, M1Ve star.
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
High Dynamic Range Imaging and Spectroscopy of Circumstellar Disks Alycia Weinberger (Carnegie Institution of Washington) With lots of input from: Aki.
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
A Low Mass H 2 Component to the AU Microscopii Circumstellar Disk Kevin France – CITA/U Toronto Aki Roberge – GSFC Roxana Lupu – JHU Seth Redfield – U.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Star and Planet Formation
Young planetary systems
ALMA does Circumstellar Disks
Molecules: Probes of the Interstellar Medium
Some considerations on disk models
The origin of gas in debris disks
Debris disks Basic properties Observational methods & constraints
Ge/Ay133 SED studies of disk “lifetimes” &
-Orbital Motions and Mass Determination
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Pawel Artymowicz Alexis Brandeker Malcolm Fridlund Göran Olofsson Protostars & Planets IV, Mannings, Boss & Russell eds. B. Zuckerman, ARAA 2001, 39: 549 W-F Thi 2002, PhD thesis, Leiden G-J van Zadelhoff 2002, PhD thesis, Leiden

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 2 Disks in Time P.S. Laplace 1796, 1799 Exposition du systeme du monde Mechanique celeste I. Kant 1755 Allgemeine Naturgeschichte und Theorie des Himmels

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 3 Disks in Time JE Keeler 1895 ApJ 1: 416

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 4 Disks in Time T Tauri Disks: around young stars ( Myr) of half a solar mass ( Msun) at 150 pc distance ( pc) in and/or near molecular clouds ``accretion disks´´ Debris Disks: around young MS-stars ( Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance ( pc) in the general field ``Vega-excess stellar disks`´ IRAS 1983ISO 1995HST 1993

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 5 Frequency of Disks High Rate of occurence around young stars NGC % Trapezium cluster 80% IC % Haisch et al BDs in Trapezium cluster 65% Muench et al. 2001

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 6 Disk Images

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 7 HH 30 in L 1551 (Taurus) T Tauri Disk with Jet

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 8 T Tauri Disks - Sizes R=7000 AU Fridlund et al (mm line data - single dish) White et al (mid- & far IR line + cont. - ISO) L 1551 IRS5 outflow source

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 9 T Tauri Disks - Sizes Size scale (AU)Tracer (mode)Reference 20000CS (1- 0) (S)Kaifu et al CO (1- 0) (S)Fridlund et al C 18 O (1- 0) (I)Sargent et al < mm (I)Woody et al mm, cm (I)Keene & Masson mm (I)Lay et al H 13 CO + (1- 0) (S)Mizuno et al mm (S)Ladd et al C 18, 17 O (2- 1) (S)Fuller et al CO (1- 0) (I)Ohashi et al H 13 CO + (1- 0) (I)Saito et al H 12, 13 CO + (1- 0) (S, I)Hogerheijde et al.1997, C 18 O + (1- 0) (I)Momose et al Fridlund et al Size depends on frequency/mode of observation

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 10 T Tauri Disks - Sizes Two Disks: separation = 40 AU & R = 5 AU Rodriguez et al (7 mm cont. - VLA Interferometer ) L 1551 IRS5 outflow source

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 11 T Tauri Disks - Sizes Summarising: T Tauri/HABE disks AUDust: mm-continuum interferometry AUDust: scattered stellar light 300 AUGas: CO lines (evidence for Kepler rotation) Silhouettte disks (``proplyds´´) up to 1000 AUDust: scattered stellar light

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 12 T Tauri Disks - Sizes & Masses

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 13 T Tauri Disks - Masses Lower limit: to 1 M Sun (mm/submm continuum) How good are these numbers? Do we understand disks?

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 14 T Tauri Disks - Masses Assume optically thin emission at long wavelengths (mm+) monochromatic flux F ~  T spherical dust grains in equilibrium with stellar radiation achieve T(a, R) = (h/k) p 1/(4+  ) (L/a R 2 ) 1/(4+  ) Q abs ( )/a = Q 0  p = (Q vis /Q 0 ) c 2 /( 32  2 h (3+  )!  m m –(4+  ) ) i.e. T ~ R -2/(4+  )  = 0 => T ~ R  = 1 => T ~ R  = 2 => T ~ R  ~ 

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 15 T Tauri Disks - Masses parameters  0 and  require knowledge of grain chemical composition shape size size distribution... but  a good diagnostic? Larsson et al. 2000, 2002 White et al. 2000

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 16 T Tauri Disks - Masses Beckwith et al Opacities  Gas-to-dust 100?

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 17 T Tauri Disks - Structure Lynden-Bell & Pringle 1974

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 18 T Tauri Disks - Structure D´Alessio et al SEDs

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 19 T Tauri Disks - Structure Steady Disks around Single Stars ESO-AO Brandeker et al VW Cha: tidally truncated disk: 60 AU

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 20 T Tauri Disks - Structure Steady Disks around Single Stars Boundary Conditions in : boundary layer, magnetosphere out: ?, interstellar turbulence? Viscosity MHD/rotation Hawley & Balbus 1995 Opacity , T,...) Models: Adams & Shu 1986 (flat) Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998, Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D)

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 21 T Tauri Disks - Make up T Tauri disks consist of gas and dust what components? in what proportions? van Zadelhoff CO (1) HCO + (5) HCN (5) CO (200) HCO + (200) HCN (200 ) LkCa 15TW Hya

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 22 T Tauri Disks - Chemistry Molecular abundances (rel. H 2 ) Species LkCa 15TW Hya CO3.4(-7)5.7(-8) HCO + 5.6(-12)2.2(-11) H 13 CO + <2.6(-12)3.6(-13) DCO + ….7.8(-13) CN2.4(-10)1.2(-10) HCN3.1(-11)1.6(-11) H 13 CN….<8.4(-13) HNC….<2.6(-12) DCN….<7.1(-14) CS8.5(-11)…. H 2 CO4.1(-11)<7.1(-13) CH 3 OH<3.7(-10)<1.9(-11) N 2 H + <2.3(-11)<1.8(-11) H 2 D + <1.5(-11)<7.8(-12) Thi 2002

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 23 T Tauri Disks - Evolution Time scales (viscous accretion disk) t dyn ~  t therm ~  (H/R )2 t visc t dyn ~ 1/  Kepler and  ~

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 24 T Tauri Disks - Evolution Disk dispersal and disk lifetimes Hollenbach et al Mass accretion evolution Calvet et al. 2000

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 25 T Tauri Disks to Debris Disks Spangler et al f d =  L IR /L vs stellar age

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 26 Debris Disks - Images P. Kalas

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 27 Debris Disks - Properties debris (collision products) or particulate (gas free) percentage of Main Sequence stars (?) (observationally) biased towards Spectral Type A for (detectable) ages <400 Myr Habing et al. 1999, 2001 disk sizes 100 to 1000 AU disk masses >1 to 100 M Moon (small dust) Pre-IRAS Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94 Vega Blackwell et al. 1983

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 28 THE Debris Disk –  Pictoris Sp. TypeA5 V Hipparcos Input Catalogue 1992 Distance19.3(0.2)  pc  Hipparcos Catalogue 1997 Age15(5) Myr Song et al Metallicitysolar Holweger & Rentzsch-Holm 1995 Disk size1835 AU NE 1450 AU SW Larwood & Kalas 2001 Disk Mass dust: >0.44 M Earth Chini et al gas: see below

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 29  Pic Disk Model: Gas Best fit model (self consistent photoionisation calculation) to EMMI data with observed emission line flux Na D erg s -1 cm -2 linerel. flux (line/Na D) [C I]370  m [C I]609  m [C II]157  m dominates the cooling [O I] 63  m [Si II] 35  m [Fe II] 26  m cf also Kamp & van Zadelhoff 2001, van Zadelhoff 2002

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 30  Pictoris New: gas disk extension to >300 AU in e.g. Na I D 2 Olofsson et al model model obser- vation VLT 2002 =>

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 31

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 32 THE Debris Disk –  Pictoris Presence of substantial amounts of H 2 debated Thi 2002 Presence of atomic gas – no doubt Olofsson et al new VLT data reveal disk flaring in e.g. CaII HK and... slit height 8´´

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 33 THE Debris Disk –  Pictoris The VLT Disk Spectrum (340 – 390 nm) only permitted lines no Fe II, no H I Fe Imultiplets 4, 5, 40, 41 Ca IIH & K TbcNi I, Ti I, V II, Cr I, Co I, Mn I, Ru I, Ce II, Tm I

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 34 THE Debris Disk –  Pictoris 1200  m (SEST) 850  m (JCMT)...and the ``Blob´´

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 35 THE Debris Disk –  Pictoris SCUBA JCMT 850  mSIMBA SEST 1200  m Holland et al Peakposition+0.8, +9.7 arcsec 0, 0 Peak flux58.3(6.5) mJy/beam 48.8(1.2) mJy/beam Deconvolved size22´´ x 11´´26´´ x 10´´ Blob position-21, -26 arcsec -26, -44 arcsec Position angle39.6 deg 31.5 deg Distance34´´52´´ Flux19.1(6.5) mJy/beam 19.7(4.2) mJy/beam Ratio3.0(1.1)2.5(0.5)

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 36 THE Debris Disk –  Pictoris Blob real? If so, associated with  Pic? Assume opacity exponents  for Blob and  for  Pic R 1200 /R 850 = (850/1200)   = 0.53 (+0.38, -0.68) if  = 0.8 (Wyatt & Dent 2002) then  = 0.3  ?  = [-0.11, 0.65]

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 37 Debris Disks and Planets Disks have non-homogeneous structure – not simple power law distributions because of planet(s)?  Pic Keck 18  m Wahhej et al Heap et al. 2000

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 38 Debris Disks and Planets Disks have non-homogeneous structure – not simple power law distributions because of planet(s)? Wilner et al  Lyr 1.3 mm (PdB) Model: excentric ``Jupiter´´

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 39 Debris Disks and Planets Do ``Planet-Stars´´ have disks? 55 Cnc No! Jayawardhana et al  CrBtbc Trilling et al HD tbc  Eri a border case? Hatzes et al. 2000

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 40 Disks: Open Questions Grain growth: from micron to cm size from cm to 100 m+ size Time of (giant) planet formation termination of planet migration Processes/time scales of disk dispersal formation and evolution of debris disks Role of stellar multiplicity free-floating planets

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 41 Disks and GENIE Angular resolution of order 2.5 (  m )/b 100m mas Debris disks generally at > 25  m Laureijs et al L-band (1000 K), N-band (300 K) L-band: min (  scat,  abs ) T Tauri disk: 0.4 AU 3 mas Debris disk:1.2 AU60 mas N-band:hot telescope/sky T Tauri disk: 9 AU60 mas Debris disk:25 AU1.2 arcsec

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 42

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 43

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 44 Debris Disks and Planets Vega  Eri

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 45  Pic Disk Models Best fit model (self consistent photoionisation calculation) to EMMI data with observed emission line flux Na D erg s -1 cm -2 linerelative flux [C I]370  m [C I]609  m [C II]157  m [O I] 63  m [Si II] 35  m [Fe II] 26  m cf also Kamp & van Zadelhoff 2001, van Zadelhoff 2002

Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 46  Pic: Atomic Gas Mass Disk Absorption velocity EW(NaD2) = 9.4 mÅ*  M(Na)  2  g [M(dust)  2  g] * cf. Vidal-Madjar et al. 1986, AA 167, 325 Disk Emission Line: EW(NaD2) = 0.72 mÅ  (disk) = 8.8 deg [r 0 (NaD) = 30 AU, H 0 (disk) = 4.6 AU]* *cf. Z(x) = r max x 0.75, x = r/ r max r max = 120 AU N(Na) = 6  cm -2 if Na/H solar (2  ), then N(HI) = 3  cm -2 * * cf. Freudling et al. 1995, AA 301, 231: N(HI)  cm -2