CSE241 R1 Verilog.1Kahng & Cichy, UCSD ©2003 CSE241 VLSI Digital Circuits Winter 2003 Recitation 1: Verilog Introduction.

Slides:



Advertisements
Similar presentations
Verilog.
Advertisements

The Verilog Hardware Description Language
Verilog Overview. University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
Combinational Logic.
ELEN 468 Lecture 21 ELEN 468 Advanced Logic Design Lecture 2 Hardware Modeling.
Chapter 11 Verilog HDL Application-Specific Integrated Circuits Michael John Sebastian Smith Addison Wesley, 1997.
Verilog Intro: Part 1.
Hardware Description Language (HDL)
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapters 4 – Part3: Verilog – Part 1.
Logic Values 0:logic 0 / false 1:logic 1 / true X:unknown logic value Z:high-impedance.
CSE 341 Verilog HDL An Introduction. Hardware Specification Languages Verilog  Similar syntax to C  Commonly used in  Industry (USA & Japan) VHDL 
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
 HDLs – Verilog and Very High Speed Integrated Circuit (VHSIC) HDL  „ Widely used in logic design  „ Describe hardware  „ Document logic functions.
1 Lecture 1: Verilog HDL Introduction. 2 What is Verilog HDL? Verilog Hardware Description Language(HDL)? –A high-level computer language can model, represent.
CSE241 R1 Verilog.1Kahng & Cichy, UCSD ©2003 CSE241 VLSI Digital Circuits Winter 2003 Recitation 1: RTL Coding in Verilog.
Logic Values 0:logic 0 / false 1:logic 1 / true X:unknown logic value Z:high-impedance.
CSCI 660 EEGN-CSCI 660 Introduction to VLSI Design Lecture 6 Khurram Kazi.
ENEE 408C Lab Capstone Project: Digital System Design Verilog Tutorial Class Web Site:
Silicon Programming--Intro. to HDLs1 Hardware description languages: introduction intellectual property (IP) introduction to VHDL and Verilog entities.
CSE241 R1 Verilog.1Kahng & Cichy, UCSD ©2003 CSE241 VLSI Digital Circuits Winter 2003 Recitation 1: Verilog Introduction.
Reconfigurable Computing (EN2911X, Fall07) Lecture 05: Verilog (1/3) Prof. Sherief Reda Division of Engineering, Brown University
ECEN ECEN475 Introduction to VLSI System Design Verilog HDL.
Kazi Fall 2006 EEGN 4941 EEGN-494 HDL Design Principles for VLSI/FPGAs Khurram Kazi.
Computer Organization Lecture Set – 03 Introduction to Verilog Huei-Yung Lin.
University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
Digital System Design EEE344 Lecture 3 Introduction to Verilog HDL Prepared by: Engr. Qazi Zia, Assistant Professor EED, COMSATS Attock1.
Today’s Lecture Process model –initial & always statements Assignments –Continuous & procedural assignments Timing Control System tasks.
Overview Logistics Last lecture Today HW5 due today
Verilog Basics Nattha Jindapetch November Agenda Logic design review Verilog HDL basics LABs.
Programmable Logic Architecture Verilog HDL FPGA Design Jason Tseng Week 2-3.
Lecture Note on Verilog, Course # , EE, NTU, C.H Tsai Basic Logic Design with Verilog TA: Chen-han Tsai.
ECE 2372 Modern Digital System Design
A VHDL Tutorial ENG2410. ENG241/VHDL Tutorial2 Goals Introduce the students to the following: –VHDL as Hardware description language. –How to describe.
CS 3850 Lecture 3 The Verilog Language. 3.1 Lexical Conventions The lexical conventions are close to the programming language C++. Comments are designated.
1 An Update on Verilog Ξ – Computer Architecture Lab 28/06/2005 Kypros Constantinides.
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
1 CSE-308 Digital System Design (DSD) N-W.F.P. University of Engineering & Technology, Peshawar.
COE 202 Introduction to Verilog Computer Engineering Department College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals.
Anurag Dwivedi. Basic Block - Gates Gates -> Flip Flops.
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
3/4/20031 ECE 551: Digital System Design * & Synthesis Lecture Set 3 3.1: Verilog - User-Defined Primitives (UDPs) (In separate file) 3.2: Verilog – Operators,
1 Hardware description languages: introduction intellectual property (IP) introduction to VHDL and Verilog entities and architectural bodies behavioral,
1 Verilog Digital System Design Z. Navabi, 2006 Verilog Language Concepts.
ELEN 468 Lecture 131 ELEN 468 Advanced Logic Design Lecture 13 Synthesis of Combinational Logic II.
Kazi ECE 6811 ECE 681 VLSI Design Automation Khurram Kazi Thanks to Automation press THE button outcomes the Chip !!! Reality or Myth.
ELEE 4303 Digital II Introduction to Verilog. ELEE 4303 Digital II Learning Objectives Get familiar with background of HDLs Basic concepts of Verilog.
CSCE 211: Digital Logic Design Chin-Tser Huang University of South Carolina.
Introduction to ASIC flow and Verilog HDL
Introduction to Verilog
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
COE 202 Introduction to Verilog Computer Engineering Department College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals.
Chapter1: Introduction Digital System Designs and Practices Using Verilog HDL and 2008~2010, John Wiley 1-1 Chapter 1: Introduction Prof. Ming-Bo.
Verilog Intro: Part 1. Hardware Description Languages A Hardware Description Language (HDL) is a language used to describe a digital system, for example,
1 University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
1 Lecture 1: Verilog HDL Introduction. 2 What is Verilog HDL? Verilog Hardware Description Language(HDL)? –A high-level computer language can model, represent.
Exp#5 & 6 Introduction to Verilog COE203 Digital Logic Laboratory Dr. Ahmad Almulhem KFUPM Spring 2009.
1 A hardware description language is a computer language that is used to describe hardware. Two HDLs are widely used Verilog HDL VHDL (Very High Speed.
Hardware Description Languages: Verilog
Discussion 2: More to discuss
Hardware Description Languages: Verilog
Introduction to DIGITAL CIRCUITS MODELING & VERIFICATION using VERILOG [Part-I]
Behavioral Modeling in Verilog
Logic Values 0:logic 0 / false 1:logic 1 / true X:unknown logic value
102-1 Under-Graduate Project Verilog
Logic Values 0:logic 0 / false 1:logic 1 / true X:unknown logic value
Supplement on Verilog adder examples
The Verilog Hardware Description Language
COE 202 Introduction to Verilog
Presentation transcript:

CSE241 R1 Verilog.1Kahng & Cichy, UCSD ©2003 CSE241 VLSI Digital Circuits Winter 2003 Recitation 1: Verilog Introduction

CSE241 R1 Verilog.2Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation

CSE241 R1 Verilog.3Kahng & Cichy, UCSD ©2003 Introduction  Learn Verilog basics l Hardware Description Language Semantics l Verilog Syntax l Features  How to use Verilog for behavioral design  How to use Verilog for structural design  How to write Verilog for synthesis (brief)  Examples!

CSE241 R1 Verilog.4Kahng & Cichy, UCSD ©2003 Introduction - Motivation  Generic HDL uses: l Simulation -Test without build l Synthesis -Real hardware (gates) l Documentation -Self documenting -Portable

CSE241 R1 Verilog.5Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation

CSE241 R1 Verilog.6Kahng & Cichy, UCSD ©2003 Quick Verilog History  The Verilog Language  Verilog HDL (Hardware Description Language) was concocted by Gateway Design Automation  Later put in the public domain by Cadence Design Systems in order to promote the language as a standard

CSE241 R1 Verilog.7Kahng & Cichy, UCSD ©2003 HDL and High Level Languages  Verilog models look like programs  Descriptions are partitioned into Verilog modules  Modules resemble subroutines in that you can write one description and use (instantiate) it in multiple places.  HDLs represent: l Electricity -Ultimately a physical entity l Parallelism - Concurrency l Time

CSE241 R1 Verilog.8Kahng & Cichy, UCSD ©2003 Hardware Description Languages  Need a description level up from logic gates.  Work at the level of functional blocks, not logic gates l Complexity of the functional blocks is up to the designer l A functional unit could be an ALU, or could be a microprocessor  The description consists of functions blocks and their interconnections l Describe functional block (not predefined) l Support hierarchical description (function block nesting)  To make sure the specification is correct, make it executable. l Run the functional specification and check what it does Slide courtesy of Ken Yang, UCLA

CSE241 R1 Verilog.9Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Syntax  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.10Kahng & Cichy, UCSD ©2003 Verilog Naming Conventions  The following must be used in all code: l Two slashes “//” are used to begin single line comments l A slash and asterisk “/*” are used to begin a multiple line comment and an asterisk and slash “*/” are used to end a multiple line comment. l Names can use alphanumeric characters, the underscore “_” character, and the dollar “$” character l Names must begin with an alphabetic letter or the underscore. l Spaces are not allowed within names  Strings: l “hello world” //string

CSE241 R1 Verilog.11Kahng & Cichy, UCSD ©2003 Reserved Keywords  The following is a list of the Verilog reserved keywords: always endmodule medium reg tranif0 and endprimitive module release tranif1 assign endspecify nand repeat tri attribute endtable negedge rnmos tri0 begin endtask nmos rpmos tri1 buf event nor rtran triand bufif0 for not rtranif0 trior bufif1 force notif0 rtranif1 trireg case forever notif1 scalared unsigned casex fork or signed vectored casez function output small wait cmos highz0 parameter specify wand

CSE241 R1 Verilog.12Kahng & Cichy, UCSD ©2003 Reserved Keywords (continued) deassign highz1pmos param spec weak0 default if posedge strength weak1 defparam ifnone primitive strong0 while disable initial pull0 strong1 wire edge inout pull1 supply0 wor else input pulldown supply1 xnor end integer pullup table xor endattribute join remos task endcase large real time endfunction macromodule realtime tran

CSE241 R1 Verilog.13Kahng & Cichy, UCSD ©2003 Numbers  Example of number notation:  ‘  Sized l 4’b1111 // 4bit binary number l 12’habc //12 bit hexadecimal number l 16’d255 //16 bit decimal number  Unsized l 234 // decimal number l ‘hc3 //32 bit hexadecimal number l ‘o21 //32 bit octal number  X or Z l 12’h13x // 12 bit hex number

CSE241 R1 Verilog.14Kahng & Cichy, UCSD ©2003 Operators  Arithmetic l * multiply l / divide l + add l - subtract l % modulus  Logical l ! Not l && and l || or  Relational l > greater l < less l >= greater-equal l <= less-equal  Equality l == equal l != not equal l === (case equality)  Bitwise l ~ negation l & and l \ or l ^ xor l ^~ xnor  Others l Reduction l Shift l Replication

CSE241 R1 Verilog.15Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Syntax  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.16Kahng & Cichy, UCSD ©2003 Ports  Keywords: input - input output - output inout - bi-directional  Ports do not store information  Example module ex (a, b, c, out) output out; input a, b, c; endmodule

CSE241 R1 Verilog.17Kahng & Cichy, UCSD ©2003 Wires and Nets  Wires l Connection between hardware elements l Module connections l Used to connect signals from sensitivity list l Memoryless  Example: wire a; //declared wire net wire b = 1’b0 // tied to zero at declaration  Advanced data types l tri l trireg

CSE241 R1 Verilog.18Kahng & Cichy, UCSD ©2003 Memory elements  Register l Keyword = reg l Represents storage l Same as a variable (as opposed to wire)  Examples: reg clock; // clock reg [0:4] vec_reg // 5 bit register vector

CSE241 R1 Verilog.19Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Syntax  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.20Kahng & Cichy, UCSD ©2003 Modules  Main lexical unit in Verilog l Functional block l Keyword = module/ endmodule l Is used for all dataflow types

CSE241 R1 Verilog.21Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.22Kahng & Cichy, UCSD ©2003 Procedural Statements  Control statements l This type of control statement implies sequential ordering keyword always provides functionality of a tiny program that executes sequentially  Inside an always block, can use standard control flow statements: l if ( ) then else ; case ( ) : ; … default: l Case statements are prioritized -The second case entry can’t happen unless the first does not match. -May not be what the actual hardware implies – especially when cases are mutually exclusive. -Need additional directives (parallel-case) to indicate this -Statements can be compound (use begin and end to form blocks) Example: (Activation List) begin if (x==y) then out= in1 else out = in2; end

CSE241 R1 Verilog.23Kahng & Cichy, UCSD ©2003 Initial Block  Another type of procedural block l Does not need an activation list l It is run just once, when the simulation starts  Used at the very start of simulation l Initialize simulation environment l Initialize design -This is usually only used in the first pass of writing a design -NOT Synthesizable, real hardware does not have initial blocks l Allows testing of a design (outside of the design module)  Use initial blocks only for non-hardware statements (like $display or $gr_waves )

CSE241 R1 Verilog.24Kahng & Cichy, UCSD ©2003 Module vs. Procedure  Module is a method of building structural hierarchy  Procedure (function) is a method of building behavioral hierarchy

CSE241 R1 Verilog.25Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.26Kahng & Cichy, UCSD ©2003 Structural Description  Modules l Represent macros l Simulate some wanted function l Can contain hierarchy

CSE241 R1 Verilog.27Kahng & Cichy, UCSD ©2003 Representation: Structural Models  Structural models l Are built from gate primitives and/or other modules l They describe the circuit using logic gates — much as you would see in an implementation of a circuit. -You could describe your lab1 circuit this way  Identify: l Gate instances, wire names, delay from a or b to f. module mux (f, a, b, sel); outputf; inputa, b, sel; and #5g1 (f1, a, nsel), g2 (f2, b, sel); or #5g3 (f, f1, f2); notg4 (nsel, sel); endmodule a b f sel

CSE241 R1 Verilog.28Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.29Kahng & Cichy, UCSD ©2003 Behavioral Statements  if-then-else l What you would expect, except that it’s doing 4-valued logic. 1 is interpreted as True; 0, x, and z are interpreted as False  case l What you would expect, except that it’s doing 4-valued logic l If “selector” is 2 bits, there are 4 2 possible case-items to select between l There is no break statement — it is assumed.  Funny constants? l Verilog allows for sized, 4-valued constants l The first number is the number of bits, the letter is the base of the following number that will be converted into the bits. 8’b00x0zx10 if (select == 1) f = in1; elsef = in0; case (selector) 2’b00: a = b + c; 2’b01: q = r + s; 2’bx1: r = 5; default: r = 0; endcase assume f, a, q, and r are registers for this slide Slide courtesy of Don Thomas, Carnegie Mellon

CSE241 R1 Verilog.30Kahng & Cichy, UCSD ©2003 Behavioral Statements  Loops l There are restrictions on using these for synthesis — don’t. l They are mentioned here for use in test modules  Two main ones — for and while l Just like in C l There is also repeat and forever — see the book reg[3:0]testOutput, i; … for (i = 0; i <= 15; i = i + 1) begin testOutput = i; #20; end reg[3:0]testOutput, i; … i = 0; while (i <= 15)) begin testOutput = i; #20 i = i + 1; end Important: Loops must have a delay operator (or as we’ll see later, or wait(FALSE)). Otherwise, the simulator never stops executing them. Slide courtesy of Don Thomas, Carnegie Mellon

CSE241 R1 Verilog.31Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Examples

CSE241 R1 Verilog.32Kahng & Cichy, UCSD ©2003 Testbenches  Behavioral blocks l Also stimulus blocks l Are used to feed signals to main block

CSE241 R1 Verilog.33Kahng & Cichy, UCSD ©2003 How to build and test a module  Construct a “test bench” for your design l Develop your hierarchical system within a module that has input and output ports (called “design” here) l Develop a separate module to generate tests for the module (“test”) l Connect these together within another module (“testbench”) module design (a, b, c); input a, b; outputc; … module test (q, r); output q, r; initial begin //drive the outputs with signals … module testbench (); wirel, m, n; designd (l, m, n); test t (l, m); initial begin //monitor and display … Slide courtesy of Don Thomas, Carnegie Mellon

CSE241 R1 Verilog.34Kahng & Cichy, UCSD ©2003 Topic Outline  Introduction  Verilog Background  Connections  Modules  Procedures  Structural  Behavioral  Testbenches  Simulation  Example  Coding Style

CSE241 R1 Verilog.35Kahng & Cichy, UCSD ©2003 Creating Code  Example: l Given a specification – “build full adder” l Name signals: -Input carry_in, A, B -Output carry_out

CSE241 R1 Verilog.36Kahng & Cichy, UCSD ©2003 Full-adder Code module full_adder (a1, a2, ci, s, co); //  lists full input/output signal list input a1, a2, ci; //input declaration output sum, co; //output declaration assign s = a1 ^ a2 ^ ci; assign co = (a1 & a2) | (a1 & ci) | (a2 & ci); endmodule Sensitivity List

CSE241 R1 Verilog.37Kahng & Cichy, UCSD ©2003 Another Verilog Example module a (…); reg e; task b; reg c; begin : d reg e; e = 1; a.e = 0; end endtask always begin : f reg g; a.b.d.e = 2; g = q.a.b.d.e; e = 3; end endmodule e’s hierarchical name is …a.b.d.e g’s hierarchical name is …a.f.g named begin-end block some ugliness here… Chapter 2.6 assumes a is instantiated in q Slide courtesy of Don Thomas, Carnegie Mellon