Enhanced Entity-Relationship and UML Modeling

Slides:



Advertisements
Similar presentations
Prof. Sin-Min Lee Department of Computer Science
Advertisements

Session 2 Welcome: The sixth learning sequence
Enhanced/Extended Relationship-Diagram
© Shamkant B. Navathe CC. © Shamkant B. Navathe CC Chapter 4 - Part I Enhanced Entity-Relationship and UML Modeling Copyright © 2004 Ramez Elmasri and.
1 Class Number – CS 304 Class Name - DBMS Instructor – Sanjay Madria Instructor – Sanjay Madria Lesson Title – EER Model –21th June.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 4- 1.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 4- 1.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 8 The Enhanced Entity- Relationship (EER) Model.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Chapter 4 Enhanced Entity-Relationship (EER) Modeling.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 1.
Enhanced ER-diagram Prof. Sin-Min Lee Department of Computer Science.
1 Enhanced Entity Relationship Modelling EER Model Concepts Includes all basic ER modeling concepts Additional concepts: subclasses/superclasses specialization/generalization.
The Enhanced Entity- Relationship (EER) Model
Chapter 4 The Enhanced Entity-Relationship (EER) Model
© Shamkant B. Navathe CC METU Department of Computer Eng Ceng 302 Introduction to DBMS Enhanced Entity-Relationship (EER) Model by Pinar Senkul resources:
Chapter 41 Enhanced Entity-Relationship and Object Modeling.
EXTENDED-ER (EER) MODEL CONCEPTS. Enhanced-ER (EER) Model Concepts  Basic ER diagram + more concepts =EER model  Additional concepts:  Subclasses/superclasses.
Specialization and generalization
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 4- 1 EER stands for Enhanced ER or Extended ER EER Model Concepts Includes all modeling concepts.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 8 The Enhanced Entity- Relationship (EER) Model.
Enhanced Entity-Relationship and UML Modeling. Enhanced-ER (EER) Model Concepts Includes all modeling concepts of basic ER Additional concepts: subclasses/superclasses,
Enhanced Entity-Relationship Model (EER) 1. Enhanced-ER (EER) Model Concepts Includes all modeling concepts of basic ER Additional concepts: subclasses/superclasses,
Entities and Attributes
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 8 The Enhanced Entry-Relationship (EER) Model.
Chapter 4: The Enhanced ER Model and Business Rules
1 CSE 480: Database Systems Lecture 4: Enhanced Entity-Relationship Modeling Reference: Read Chapter 8.1 – 8.5 of the textbook.
© Shamkant B. Navathe CC. © Shamkant B. Navathe CC Chapter 4 - Part I Enhanced Entity-Relationship and UML Modeling Copyright © 2004 Ramez Elmasri and.
Enhanced Entity – Relationship (EER) and Object Modeling (Based on Chapter 4 in Fundamentals of Database Systems by Elmasri and Navathe, Ed. 4)
THE ENHANCED ER (EER) MODEL CHAPTER 8 (6/E) CHAPTER 4 (5/E)
Database Systems: Enhanced Entity-Relationship Modeling Dr. Taysir Hassan Abdel Hamid.
EER Model.
Enhanced Entity-Relationship (EER) Modeling. Slide 4- 2 Chapter Outline EER stands for Enhanced ER or Extended ER EER Model Concepts Includes all modeling.
© Shamkant B. Navathe CC. © Shamkant B. Navathe CC Lesson 6 Enhanced Entity- Relationship and UML Modeling Copyright © 2004 Ramez Elmasri and Shamkant.
1 CSBP430 – Database Systems Chapter 4: Enhanced Entity– Relationship and Object Modeling Elarbi Badidi College of Information Technology United Arab Emirates.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 4- 1.
Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Copyright © 2004 Ramez Elmasri and Shamkant Navathe Enhanced-ER (EER) Model Concepts.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Chapter 4 Enhanced Entity-Relationship (EER) Modeling.
Slide 4-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercise 1. a property or description.
© Shamkant B. Navathe CC Enhanced Entity-Relationship Copyright © 2004 Ramez Elmasri and Shamkant Navathe.
Topic 4 - Part I Enhanced Entity-Relationship and UML Modeling
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 4 Enhanced Entity-Relationship (EER) Modeling Slide 1- 1.
Lecture 3 A short revision of ER and EER modelling See R. Elmasri, S.B. Navathe. Fundamentals of Database Systems (third edition) Addison-wesley. Chapter.
Enhanced Entity-Relationship and UML Modeling. 2.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 1.
Chapter 4_part2: The Enhanced Entity-Relationship (EER) Model.
Database Systems 主講人 : 陳建源 日期 :99/10/19 研究室 : 法 Chapter 4 Enhanced Entity-Relationship and Object Modeling.
Databases (CS507) CHAPTER 7.
Enhanced Entity-Relationship (EER) Model
The Enhanced Entity- Relationship (EER) Model
Enhanced Entity-Relationship and Object Modeling Objectives
© Shamkant B. Navathe CC.
Conceptual Design & ERD Modelling
Enhanced Entity-Relationship (EER) Modeling
The Enhanced Entity- Relationship (EER) Model
Enhanced Entity-Relationship (EER) Modeling
Session 2 Welcome: The sixth learning sequence
Enhanced Entity-Relationship (EER) Modeling
© Shamkant B. Navathe CC.
© Shamkant B. Navathe CC.
CS4222 Principles of Database System
CS4222 Principles of Database System
Sampath Jayarathna Cal Poly Pomona
ENHANCED ENTITY-RELATIONSHIP (EER) MODEL
Sampath Jayarathna Cal Poly Pomona
© Shamkant B. Navathe CC.
Enhanced Entity-Relationship (EER) Modeling
Enhanced Entity-Relationship (EER) Modeling
Presentation transcript:

Enhanced Entity-Relationship and UML Modeling Chapter 4 Enhanced Entity-Relationship and UML Modeling

Enhanced-ER (EER) Model Concepts EER Model: Includes all modeling concepts of basic ER and Additional concepts: Subclasses/superclasses.(lớp con/lớp cha) Specialization(chuyên biệt)/generalization(tổng quát). Categories, attribute inheritance (phân cấp) It is used to model applications more completely and accurately if needed It includes some object-oriented concepts, such as inheritance

Subclasses and Superclasses An entity type may have additional meaningful subgroupings of its entities Example: Employee may be further grouped into Secretary, Engineer, Manager, Technician,… Each of these groupings is a subset of EMPLOYEE entities Each is called a subclass of EMPLOYEE EMPLOYEE is the superclass for each of these subclasses These are called superclass/subclass relationships. Example: Employee/secretary. Employee/technician

Subclasses and Superclasses Employees Technician Manager Engineer Secretary SubClasses SuperClass

Subclasses and Superclasses Inheritance attribute: Subclass will inherit some attributes and relationships of the Superclass and itsseft attributes. Relationship between Superclasses and Subclasses is ISA

Subclasses and Superclasses

Specialization Specialization (chuyên biệt): Is the process of defining a set of subclasses of a superclass The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type. May have several specializations of the same superclass

Specialization Example: Another specialization of EMPLOYEE based in method of pay is {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}. Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams Attributes of a subclass are called specific attributes. For example, TypingSpeed of SECRETARY The subclass can participate in specific relationship types. For example, BELONGS_TO of HOURLY_EMPLOYEE

Example of a Specialization

Generalization (tổng quát hóa) The reverse of the specialization process Several classes with common features are generalized into a superclass; original classes become its subclasses Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become subclasses of the superclass VEHICLE. We can view {CAR, TRUCK} as a specialization of VEHICLE Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

Generalization (tổng quát hóa)

Constraints on Specialization/Generalization Two other conditions apply to a specialization/generalization Disjointness Constraint: Specifies that the subclasses of the specialization must be disjointed (an entity can be a member of at most one of the subclasses of the specialization). Specified by d in EER diagram Overlaping contraint: that is the same entity may be a member of more than one subclass of the specialization. Specified by o in EER diagram

Constraints on Specialization/Generalization

Constraints on Specialization/Generalization

Constraints on Specialization/Generalization Completeness Constraint: Total (Ràng buộc toàn bộ): specifies that every entity in the superclass must be a member of some subclass in the specialization/ generalization. Shown in EER diagrams by a double line Partial(Ràng buộc từng phần): allows an entity not to belong to any of the subclasses Shown in EER diagrams by a single line.

Constraints on Specialization/Generalization

Constraints on Specialization/Generalization Hence, we have four types of specialization/generalization: Disjoint, total Disjoint, partial Overlapping, total Overlapping, partial Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of disjoint partial Specialization

Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới) A subclass may itself have further subclasses specified on it Forms a hierarchy or a lattice Hierarchy has a constraint that every subclass has only one superclass (called single inheritance) In a lattice, a subclass can be subclass of more than one superclass (called multiple inheritance) In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses Một lớp con có thể có lớp con của chính nó bao gồm 2 loại Phân cấp (Hierachy): là ràng buộc trong đó tất cả các lớp con chỉ tham gia vào một liên kết lớp cha/con(thừa kế đơn ánh. Lưới (Lattice) là ráng buộc trong đó lớp con có thể tham gia vào nhiều hơn 1 liên kết cha/con (thừa kế bội) Trong loại chuyên biết này lớp con không chỉ kế thừa thuộc tính của lớp cha mà còn kế thừa thuộc tính cua lớp cha của cha nó.

Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới) Specialization Lattices example:

Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới)

Specialization Shared Subclasses Shared subclass: A subclass with more than one superclass. Can have specialization hierarchies or lattices, or generalization hierarchies or lattices. In specialization, start with an entity type and then define subclasses of the entity type by successive specialization (top down conceptual refinement process) In generalization, start with many entity types and generalize those that have common properties (bottom up conceptual synthesis process)

Specialization / Generalization Lattice Example (UNIVERSITY)

Categories (UNION TYPES) Superclass/subclass relationship with more than one superclass, where the superclasses represent different entity types. In this case, the subclass will represent a collection of objects that is a subset of the UNION of distinct entity types. Such a subclass is called a category or UNION TYPE. Example: Database for vehicle registration, vehicle owner can be a person, a bank (holding a lien on a vehicle) or a company. Tất cả các mối quan hệ lớp cha / lớp con chúng ta đã thấy đều có một lớp cha duy nhất A shared subclass is subclass in more than one distinct superclass/subclass relationships, where each relationships has a single superclass (multiple inheritance)

Categories (UNION TYPES) Category (subclass) OWNER is a subset of the union of the three superclasses COMPANY, BANK, and PERSON A category member must exist in at least one of its superclasses Note: The difference from shared subclass, which is subset of the intersection of its superclasses (shared subclass member must exist in all of its superclasses).

Formal Definitions of EER Model (1) Class C: A set of entities; could be entity type, subclass, superclass, category. Subclass S: A class whose entities must always be subset of the entities in another class, called the superclass C of the superclass/subclass (or IS-A) relationship S/C: S ⊆ C Specialization Z: Z = {S1, S2,…, Sn} a set of subclasses with same superclass G; hence, G/Si a superclass relationship for i = 1, …., n.

Formal Definitions of EER Model (1) G is called a generalization of the subclasses {S1, S2,…, Sn} Z is total if we always have: S1 ∪ S2 ∪ … ∪ Sn = G; Otherwise, Z is partial. Z is disjoint if we always have: Si ∩ S2 empty-set for i ≠ j; Otherwise, Z is overlapping.

Formal Definitions of EER Model (2) Subclass S of C is predicate defined if predicate p on attributes of C is used to specify membership in S; that is, S = C[p], where C[p] is the set of entities in C that satisfy p A subclass not defined by a predicate is called user- defined Attribute-defined specialization: if a predicate A = ci (where A is an attribute of G and ci is a constant value from the domain of A) is used to specify membership in each subclass Si in Z. Note: If ci ≠ cj for i ≠ j, and A is single-valued, then the attribute-defined specialization will be disjoint.

Formal Definitions of EER Model (2) Category or UNION type T A class that is a subset of the union of n defining superclass. D1, D2,…Dn, n>1: T ⊆ (D1 ∪ D2 ∪ … ∪ Dn) A predicate pi on the attributes of T. If a predicate pi on the attributes of Di can specify entities of Di that are members of T. If a predicate is specified on every Di: T = (D1[p1] ∪ D2[p2] ∪…∪ Dn[pn] Note: The definition of relationship type should have 'entity type' replaced with 'class'.

Cardinality Constraints Cardinality Constraint: Quantification of the relationship between two concepts or classes (a constraint on aggregation) MINIMUM (A,B) = n: At a minimum, one instance of A is related to at least n instances of B. n = 0 MIN(A,B) = 0 MIN(Person, Car) = 0 n = 1 MIN(A,B) = 1 MIN(Cust, Ship-address) = 1 n = inf. MIN(A,B) = inf. NOT POSSIBLE n = x (fixed) MIN(A,B) = x MIN(Car, Wheels) = 4

Formal Definitions of EER Model (2) MAXIMUM (A,B) = n: At a maximum, one instance of A is related to at least n instances of B n = 0 MAX(A,B) = 0 DOES NOT ARISE n = 1 MAX(A,B) = 1 MAX(Cust, Ship-address) = 1 n = inf. MAX(A,B) = inf. MAX(Cust, Orders) = inf. n = x (fixed) MAX(A,B) = x MAX(Stud, Course) = 6

Participation constraints MIN (A,B) = 0 Optional Participation MIN (A,B) = 1 Mandatory Participation MAX (A,B) = 0 No Participation MIN (A,B) = x, MAX (A,B) = y Range Constrained Participation