Regression model A prediction approach. Prediction Independent variable (input/operating variable) Dependent variable (response variable) Prediction error.

Slides:



Advertisements
Similar presentations
Kin 304 Regression Linear Regression Least Sum of Squares
Advertisements

1 Econometrics. 2 Ch1 The nature and scope of Econometrics Y: dependent var. => effect ( 果 ) X 1, …X k : independent var. => cause ( 因 ) Ch2-Ch5:Review.
03/19/2003 Week #4 江支弘 Chapter 4 Making Predictions: Regression Analysis.
Multivariate statistical analysis Regression analysis.
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Regression Analysis Module 3. Regression Regression is the attempt to explain the variation in a dependent variable using the variation in independent.
Ch11 Curve Fitting Dr. Deshi Ye
Simple Linear Regression
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Psychology 202b Advanced Psychological Statistics, II February 1, 2011.
1 Simple Regression ( 簡單迴歸分析 ) Social Research Methods 2109 & 6507 Spring, 2006 March 8, 9, 13, 2006.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
1-1 Regression Models  Population Deterministic Regression Model Y i =  0 +  1 X i u Y i only depends on the value of X i and no other factor can affect.
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
民意調查的分析 II 蔡佳泓 政大選舉研究中心 副研究員. 課程大綱 假設的檢定 研究假設 H1: 研究假設 ( 例: X 與 Y 相關 ) H0: 虛無假設 ( 例: X 與 Y 無關 ) 檢定結果:接受虛無假設或拒斥虛無假 設,但不代表接受研究假設.
Distributed Video Coding. Outline Distributed video coding Lossless compression Lossy compression Low complexity video encoding Distributed image coding.
導線測量平差導論 觀測方程式 多餘方程式 實例 最小控制量 網形平差 χ2檢定:擬合度檢定
觀測量的權 權的觀念與計算.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
Chapter Topics Types of Regression Models
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 7 Sampling Distribution
第十二章 變異數分析 12.1 單因子變異數分析 1-way ANOVA Subject : 比較三組以上的母體平均數 k 組資料,母體平均數為 μ 1, …, μ i, …, μ k Data : k 組資料,樣本數為 n 1,…, n k. x ij --- 第 i 組的第 j 個觀察值 N =
Simple Linear Regression Analysis
Analysis of Variance Comparisons among multiple populations.
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006.
Quantitative Business Analysis for Decision Making Simple Linear Regression.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
Statistics 350 Lecture 17. Today Last Day: Introduction to Multiple Linear Regression Model Today: More Chapter 6.
Simple Linear Regression Analysis
Regression and Correlation Methods Judy Zhong Ph.D.
Chapter 14 Simple Regression
OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.
Statistics for Education Research Statistics for Education Research Lecture 9 MANOVA, Linear Regression & Multiple Regression Instructor: Dr. Tung-hsien.
1 Curve Fitting ( 曲線適配 ). Function Approximation 領域技術  Trend analysis  A process of using the pattern of data to make predictions  Function approximation.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
Copyright © 2011 Pearson Education, Inc. Linear Patterns Chapter 19.
Section 12.3 Regression Analysis HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant Systems, Inc. All.
Chapter 6 Simple Regression Introduction Fundamental questions – Is there a relationship between two random variables and how strong is it? – Can.
Lesson 14 - R Chapter 14 Review. Objectives Summarize the chapter Define the vocabulary used Complete all objectives Successfully answer any of the review.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Dependent (response) Variable Independent (control) Variable Random Error XY x1x1 y1y1 x2x2 y2y2 …… xnxn ynyn Raw data: Assumption:  i ‘s are independent.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Ch 8 實習.
Statistics 350 Lecture 2. Today Last Day: Section Today: Section 1.6 Homework #1: Chapter 1 Problems (page 33-38): 2, 5, 6, 7, 22, 26, 33, 34,
Statistics 350 Review. Today Today: Review Simple Linear Regression Simple linear regression model: Y i =  for i=1,2,…,n Distribution of errors.
REGRESSION G&W p
Kin 304 Regression Linear Regression Least Sum of Squares
Inference in Simple Linear Regression
Ch12.1 Simple Linear Regression
Multiple Regression and Model Building
BPK 304W Regression Linear Regression Least Sum of Squares
BIVARIATE REGRESSION AND CORRELATION
BA 275 Quantitative Business Methods
Linear Regression.
Simple Linear Regression
Topic 11: Matrix Approach to Linear Regression
Regression and Correlation of Data
Presentation transcript:

Regression model A prediction approach

Prediction Independent variable (input/operating variable) Dependent variable (response variable) Prediction error The prediction model: the linear regression line, the linear regression equation

Simple regression model The regression line- Expected response Error of simple regression model Actual response ∵

Graphic explanation

LSE estimators By definition

Assumptions of regression model The distribution of residual: e Normality (~N(0, σ2)) Equality of variance (the same variance σ2 for every σi2 ) Independence from X i

Distribution of the β estimators

S xx

Distribution of the β estimators

Residual analysis Sum of Square of Residuals

Inference of β ∵ ∴ Therefore,, and

Confidence interval for β

Decomposition of Syy, Syy=SSr+SSm X Y Y- Y^ Yi (Yi-Y-) (Yi-Y^) (Y^-Y-) 如果離差越大, 表示 Y^ 不太可能是水平線, 因 為若是水平線, 則差的 平方和將會很小 如果離差越小, 表示 迴歸線越接近真實 值, 預測得越準確 ! Y 的離差, 因給 定 sample 之後 固定不變

Inference of the mean response α+β x 0

Confidence interval for the mean response α+β x 0 分母代入 X 2 /(n-2) 之後除去σ2

Inference of the response at the input level x 0

Confidence interval for the response at the input level x 0 Normality & equality testing Plotting the random data and regression line Plotting the residuals along the predictive variable

Determination and sample correlation coefficient By definition,

More regression models Multiple regression More than one predictive variables Transforming to linearity Log, square Logistic regression For binary response data

Homework #2 Problem 5,12,26,39,42, optional 48